
12/06/00

SPARK 1.0
User's Manual

Simulation Problem
Analysis and Research

Kernel

Lawrence Berkeley National Laboratory
Ayres Sowell Associates, Inc.

Copyright © 1997-2000 Ayres Sowell Associates, Inc. Pending approval of the U.S. Department of energy. All rights reserved.

 SPARK 1.0 User's Manual

 i

Contents
SECTION 1 INTRODUCTION ...1

1.1 WHAT IS SPARK? ...1
1.2 KINDS OF PROBLEMS ...1
1.3 DESCRIBING PROBLEMS FOR SPARK SOLUTION ...1
1.4 PORTABILITY AND USER INTERFACES..2
1.5 THE HISTORY OF SPARK ..3

SECTION 2 EXAMPLES ..5

2.1 OVERVIEW AND TERMINOLOGY...5
2.2 SIMPLE MATH PROBLEMS..6

2.2.1 A Single Object Example..6
2.2.2 Arbitrary Input/Output Designation ..8
2.2.3 Problems with Several Objects ..8
2.2.4 Problems Requiring Iterative Solution...11

2.3 WELL POSED PROBLEMS ...13
2.4 CREATING SPARK ATOMIC CLASSES..14

2.4.1 Class Definition..14
2.4.2 Inverse Functions Definition..16

2.5 MODELS OF PHYSICAL SYSTEMS..17
2.5.1 Units, Valid Range, and Initial Values ..17
2.5.2 Macro Objects..19

2.6 DIFFERENTIAL EQUATIONS ..22
2.6.1 Numerical Solution of Differential Equations..22
2.6.2 How SPARK Deals with Differential Equations ..23
2.6.3 Solving a Simple Differential Equation..23
2.6.4 SPARK Library Integrator Object Classes ..26
2.6.5 Creating SPARK Integrator Object Classes ..27

2.7 A LARGER EXAMPLE: AIR-CONDITIONED ROOM...28

SECTION 3 ADVANCED TOPICS..37

3.1 NUMERICAL INTEGRATION ISSUES...37
3.2 ITERATIVE SOLUTION AND BREAK VARIABLES..38
3.3 HOW SPARK ASSIGNS VALUES TO VARIABLES ..39

3.3.1 Initialization...39
3.3.2 Prediction...40
3.3.3 Updating ..41
3.3.4 Solution ..41
3.3.5 Propagation ...42

3.4 INPUT VALUES FROM FILES ...43
3.5 MACRO LINKS ...44
3.6 INTERNAL SPARK NAMES FOR VARIABLES (FULL NAMES OF LINKS OR PORTS)47
3.7 USING THE PROBE STATEMENT ...49
3.8 SYMBOLIC PROCESSING...49

3.8.1 Simple Symbolic Processing ..50

SPARK 1.0 User's Manual

ii

3.8.2 Generating an Inverse..51
3.8.3 Caveats...51

3.9 PREVIOUS VALUE VARIABLES, OR UPDATING VARIABLES FROM LINKS ..51
3.10 SOLUTION METHOD CONTROL...53

3.10.1 SPARK Problem Components ..53
3.10.2 Default Settings..54
3.10.3 Component Solving Methods ...54
3.10.4 Matrix Solving Methods ...56
3.10.5 Stopping Criterion for Iterative Solution ...57
3.10.6 Scaled Perturbation for Partial Derivatives ..58
3.10.7 Update Component Settings at Run Time ..59

3.11 DEBUGGING SPARK PROGRAMS ..59
3.11.1 Parsing Errors ...60
3.11.2 Setup Errors ...60
3.11.3 Solution Difficulties..60
3.11.4 Trace File Mechanism ...62
3.11.5 Problem-level Diagnostic Reports ...63

3.12 OUTPUT AND POST PROCESSING..63
3.13 SNAPSHOT FILES AND RESTARTING SOLUTIONS...64
3.14 RUN CONTROL FILE ...65
3.15 USING SPARK LIBRARY FUNCTIONS IN AN ATOMIC CLASS ..67

3.15.1 Error handling functions..67
3.15.2 Predicate functions ..68
3.15.3 Access functions ...68
3.15.4 Math functions ...68
3.15.5 Access methods for the TArgument class ...68

SECTION 4 SPARK LANGUAGE REFERENCE..71

4.1 NOTATION USED IN THIS SECTION ...71
4.2 SPECIAL CHARACTERS ...71
4.3 NAMES AND OTHER STRINGS...71

4.3.1 Reserved Names ...71
4.3.2 Rules for User Specified Names...72
4.3.3 Literals ...72

4.4 COMMENTS..72
4.5 COMPOUND STATEMENTS..72
4.6 ATOMIC CLASS FILE ..73
4.7 MACRO CLASS FILE ...73
4.8 PROBLEM FILE...74
4.9 PORT STATEMENT..74
4.10 PARAMETER STATEMENT..76
4.11 PROBE STATEMENT..76
4.12 DECLARE STATEMENT ..77
4.13 LINK STATEMENT...77
4.14 INPUT STATEMENT ..78
4.15 EQUATIONS STATEMENT..78
4.16 FUNCTIONS STATEMENT ..79
4.17 INPUT FROM FILES...79

APPENDIX A USING THE HVAC TOOL KIT ...81

A.1 THE SPARK HVAC TOOLKIT..81
A.2 EXAMPLE USAGE ..81

APPENDIX B PREFERENCE FILES..87

B.1 WHAT ARE PREFERENCE FILES? ...87

 SPARK 1.0 User's Manual

 iii

B.2 USES OF PREFERENCE FILES IN SPARK..87
B.3 HIERARCHICAL DATA ...87
B.4 PREFERENCE FILE FOR THE EXAMPLE ...88

REFERENCES ..91

GLOSSARY OF TERMS ...93

INDEX ..99

NOTICE ...103

 SPARK 1.0 User's Manual

 Section 1 Introduction •••• 1

Section 1 Introduction

1.1 What is SPARK?
Simulation of a physical system requires development of a mathematical model, usually composed of
differential and/or algebraic equations. These equations then must be solved at each point in time over
some interval of interest. The Simulation Problem Analysis and Research Kernel (SPARK) is an object
oriented software system to perform such simulations. By object oriented we mean that components and
subsystems are modeled as objects that can be interconnected to specify the model of the entire system.
Often the same component and subsystem models can be used in many different system models, saving the
work of redevelopment.

1.2 Kinds of Problems
Since nearly any physical or
biological system can be
described in terms of a
mathematical model, SPARK
can be used in many scientific
and engineering fields.

SPARK may be thought of as a general differential/algebraic solver.
This means that it can be used to solve any kind of mathematical
problem described in terms of a set of differential and algebraic
equations. The term "continuous system" is often used to describe this
class of problems. Typical examples include building heating and
cooling systems, heat transfer analysis, and biological processes.
While, in principle, any system can be described in terms of differential
and algebraic equations, there are many systems that are more easily
described in terms of discrete states. Typical examples include assembly
lines from the field of manufacturing engineering and queuing problems
from various fields. SPARK is not designed for discrete state simulation
problems. However, there are limited facilities for handling discrete
events in otherwise continuous systems.

1.3 Describing Problems for SPARK Solution
Describing a problem for SPARK solution begins by breaking it down in an object oriented way (Nierstrasz
1989). This just means to think about the problem in terms of its components, with each component to be

SPARK 1.0 User's Manual

2 •••• Section 1 Introduction

represented by a SPARK object. Then, a model is developed for each component not already present in a
SPARK library. Since there may be several components of the same kind, SPARK object models, i.e.,
equations or groups of equations, are defined in a generic manner, called classes. Classes serve as
templates for creating any number of like objects that may be needed in a problem. The problem model is
then completed by linking objects together, thus indicating how they interact, and specifying data values
that specialize the model to represent the actual problem to be solved, and provide boundary values.
Section 2.2 has several examples (See page 6).

Naturally, model descriptions must be expressed in some formal way. SPARK object class models are
described in a textual language that is similar to other simulation programming languages except that it is
non-procedural. That is, it is not necessary to order the equations, or to express them as assignment
statements. This property derives from the input/output free manner in which the object classes are defined,
and the use of mathematical graphs (McHugh 1990) to find an appropriate solution sequence.

In SPARK, the smallest programming element is a class consisting of an individual equation, called an
atomic class. Then, macro classes bring together several atomic classes (and possibly other macro classes)
into a higher level unit. Problem models are similarly described, using the atomic and macro classes, and
placed in a problem specification file. When the problem is processed by SPARK, the problem
specification file is converted to a C++ program, which gets compiled, linked and executed to solve the
problem for given boundary conditions.

You must have access to a C++ compiler on the machine running SPARK. On Windows 95/98/NT
platforms, the default WinSPARK installation assumes that you have Microsoft Visual C++ installed, but
Borland, GNU, and Symantec compilers are also supported. VisualSPARK on Windows 95/98/NT
platforms normally use the MINGW implementation of the GNU C++ compiler, although the Cygwin
implementation has also been used. UNIX installations normally use the GNU compiler, but SPARK has
also been used with other compilers commonly available on Sun workstations.

While specifying problems in the SPARK language using existing classes is relatively easy, writing SPARK
class models can be tedious. One necessary task is deriving the inverses for the class equation, i.e., closed-
form solutions for several or all variables that occur in the equation. The labor of this task is multiplied in
certain kinds of problems, such as those described in terms of partial differential equations. Such equations
have to first be expressed as sets of ordinary differential equations, replicated many times with slight
variations. To simplify these tasks, SPARK can be installed with symbolic tools, such as Maple (Char,
Geddes et al. 1985). With such tools the user need specify only the atomic class equation, from which all
necessary inverses and supporting C++ functions are generated automatically through symbolic
manipulation. For users without Maple, SPARK comes with its own symbolic manipulation tool that, while
very limited, can find inverses of many equations encountered in simulation practice. For more involved
problems, these symbolic tools offer a significant improvement in productivity. However, initially it will be
more instructive for you to use SPARK directly, as we show in this Manual.

1.4 Portability and User Interfaces
SPARK is intended to be portable. The basic elements, i.e., the parser, setup program, and fixed elements
of the solver, will compile and run on nearly any platform for which there is a C++ compiler. In the initial
release, executables, necessary source code, and graphical user interfaces are provided for the UNIX and
Windows 95/98/NT platforms. On both platforms, the graphical user interfaces allow text-based creation of
classes and problems using the SPARK language, as well as problem execution and results display. Post
processing for visualization of results is supported in both environments.

This User's Manual is intended to cover the basic principles of SPARK programming. To the extent
possible, it is intended to be independent of the platform. Consequently, examples are demonstrated using
the command line interface only. Separate Installation & Usage Guides provide instructions for the
individual platforms.

 SPARK 1.0 User's Manual

 Section 1 Introduction •••• 3

1.5 The History of SPARK
Although a general tool, SPARK was developed for use in simulation of building service systems, e.g.,
heating and air-conditioning. Most usage up to the time of this writing has been on systems from this field.

The first implementation of SPARK, which solved only algebraic problems, was done at the Lawrence
Berkeley National Laboratory in 1986 (Anderson 1986). The basic ideas, including the graph-theoretic
aspects, were based on earlier work at the IBM Los Angeles Scientific Center (Sowell, Taghavi et al. 1984).
Buhl and Sowell extended the LBNL implementation to allow solution of differential equations in 1988
(Sowell and Buhl 1988). The MACSYMA and Maple interfaces were developed by Nataf and Winkelmann
(Nataf and Winkelmann 1992), who also made many other improvements. Since that time, there have been
new developments. For example, the solver was revised to decompose the problem into separately solvable
components (Buhl, Erdem et al. 1993). Then in preparation for the initial public release, SPARK was
completely rewritten in 1995-96. In this rewrite a new class and problem description language was
implemented to improve modeling flexibility, and the solver was redesigned to improve solution speed. In
addition, several user interface tools were developed, including a simple symbolic manipulation tool.

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 5

Section 2 Examples

2.1 Overview and Terminology
In this section we develop the main ideas and demonstrate the usage of SPARK in a tutorial manner.
Mathematical problems are used for initial simplicity. Later sections extend these ideas to treat models
based on actual physical systems.

We begin by defining some terminology. The basic entity in a SPARK model is the object that consists of a
single algebraic equation and its interface or port variables. Objects are created by reference to a class,
which may be thought of as a template for the equation object. As an example, consider the simple equation
for the sum of two real numbers:

a b c + = (2.1)

The class that we might call sum would contain this equation, and its ports would consist of the variables a,
b, and c. Figure 2.1 is a pictorial representation of this idea.

a

Figure 2.1 Sum Class Diagram

Note that we distinguish between an object and the class from which it is created. This is because there
might be need for more than one equation of this form in a particular model. We can create as many
instances (objects) from the class sum as we wish. Moreover, classes are saved, allowing their use in many
different problems. In this way, SPARK reduces the model development work through code reuse.

Note also that the possibility of multiple instances of a class means that we must distinguish between the
symbols used in defining the class and the corresponding variable names occurring in the problem
definition. That is, if we wish to have the sum class represent both x + y = z and r + s = t, it is obvious that

SPARK 1.0 User's Manual

6 •••• Section 2 Examples

a must represent x in one place and r in another. We call variables such as x and r problem variables
because they relate to a particular problem being described. On the other hand, a, b, and c relate only to the
class definition and are called interface or port variables. It is also common to refer to SPARK problem
variables as links because the keyword link is used to connect object ports, thus introducing the variable and
assigning to it a name. We will see this in examples below.

2.2 Simple Math Problems
Although SPARK is intended for the analysis of complex physical systems represented as large systems of
nonlinear equations, both algebraic and differential, an understanding of the basic methodology can best be
obtained by working first with simple mathematical problems. We begin with the simplest possible
problem, a single linear equation. This problem is then extended in steps to demonstrate more and more
SPARK features. This will prepare us for dealing with more complex systems in later sections.

2.2.1 A Single Object Example

As a first exercise we will develop a SPARK solution for a simple math problem called 2sum. In 2sum we
seek solutions for the equation:

x y z + = (2.2)

As we saw in Section 2.1, there is a class in the SPARK foundation class library globalclass called sum
which we can use to solve this problem. As shown in Figure 2.1 (See page 5), its port variables are a, b,
and c, and it enforces the relationship of Equation 2.1. Obviously, by associating a with x, b with y, and c
with z we can represent Equation 2.2 with an object of the sum class.

Equation 2.2 is a mathematical model involving three variables and one equation. To create a well-posed
problem, we have to define two inputs. For this example, let's specify x and y as input, so that z is to be
determined. The problem definition file 2sum.pr then has the following contents:

/* Problem Definition File
 * for Simple Math Problem
 * 2sum.pr
 */
declare sum s;
input x s.a report;
input y s.b report;
link z s.c report;

Inputs are the quantities
known at the outset. Links
are variables to be solved for.

Here the declare statement creates an object s as an instance of the class
sum. The input statements serve two functions. First, they associate the
problem variables x and y with the corresponding object port variables
s.a and s.b respectively. Note that we employ the notation
name.variable to refer to the port variable of object name. Secondly,
they indicate that these problem variables are inputs, as opposed to being
determined by the solution process. Like input, the link statement
associates problem variables with object port variables. However, links
are variables to be solved for rather than inputs. The keyword report in
link and input statements means that the variable should be reported in
the SPARK output.

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 7

After creating 2sum.pr as shown above, you must create an input file called 2sum.inp with the following
contents:

2 x y

0 1 2

Here we see the format of a SPARK input file. The first line gives the number of input items, followed by
their symbols as defined by the input statements in the problem specification file. The subsequent lines give
values for each input variable, preceded by the time at which these values apply. If the problem is not a
dynamic one, i.e., we are seeking a solution for only one set of inputs, only two lines are required as shown
above. However, if we seek solutions at other time values, as many lines as needed can be given. This is
discussed further when we take up dynamic problems in Section 2.6 (See page 22).

You can now run the problem with SPARK. The commands to do so differ somewhat depending on your
platform. For a Windows 95/98/NT WinSPARK installation, type:
buildsolver 2sum.pr spark.prf <enter>

This results in creation of an executable program called 2sum.exe Several other files are created, including
2sum.prf and 2sum.run which are needed to execute 2sum.exe. To execute the program for numerical
solution enter:
2sum 2sum.prf 2sum.run <enter>

If you are working with a UNIX or any VisualSPARK installation, the equivalent command is:
runspark <enter>

This builds and executes the single allowed problem file in the current working directory. It can be
executed again without rebuilding with the command line:
2sum 2sum.prf 2sum.run <enter>

Since SPARK is often used to solve dynamic problems, run control information is needed when the
program begins to execute. This information is provided in a problem run control file, probName.run,
normally generated automatically when you first run a new SPARK problem. The file has the format of a
SPARK preference file, discussed in Appendix B (See page 87).

The run control file for 2sum.pr, i.e., 2sum.run, is:
(
InitialTime (0.0 ())
FinalTime (0.0 ())
TimeIncrement (1.0 ())
FirstReport (0.0 ())
ReportCycle (1.0 ())
DiagnosticLevel (3 ())
InputFiles (2sum.inp ())
OutputFile (2sum.out ())
FinalSnapshotFile (2sum.snap ())
InitialSnapshotFile (2sum.init ())
)

The first five keys define the interval over which the problem is solved and other time related data. The
InitialTime, FinalTime, and TimeIncrement control the solution interval and the closeness of the solution
points in this interval. Since you may not wish to generate output at every solution point, you are allowed to
specify when reporting is to begin and the interval between reporting with FirstReport and ReportCycle
respectively. Because we are working a simple, algebraic problem here and we just want a single solution,
we specify FinalTime to be the same as the InitialTime and FirstReport at time 0. DiagnosticLevel specifies
the amount of intermediate output wanted. This is discussed further in Section 3.11.5 (See page 63). The
remaining lines in the run control file specify various files related to the problem. We have already
discussed the 2sum.inp and 2sum.out files. Here we see that in the 2sum.run file you can specify where

SPARK 1.0 User's Manual

8 •••• Section 2 Examples

these files are located in your directory structure. In the above example, they are specified to reside in the
current working directory. The other two files, FinalSnapshotFile and InitialSnapshotFile are discussed in
Section 3.13 (See page 64).

When the problem runs, summary output is displayed on the screen, and the principal output is written to a
file called 2sum.out. For this problem the 2sum.out contains:

3 y x z

0 2 1 3

As with the input file, the first line gives the number of outputs, followed by the link names of each. The
second line gives the time, followed by the result values for each output listed in the preceding line. As
expected, adding 1 and 2 gives 3!

2.2.2 Arbitrary Input/Output Designation

With SPARK, the
problem can be changed
without changing the
model.

The preceding example showed the basic steps required to set up a SPARK
problem. However, it did not show SPARK's unique capabilities. One of
these capabilities is that we can easily change which variables are input and
which are output. That is, the problem can be changed without changing the
model. For example, if we are interested instead in what y will be for
specified values of x and z, we simply designate z as input and y as link:

/* Add 2 numbers together */
/* 2sum.pr */
/* */
declare sum s;
input x s.a report;
link y s.b report;
input z s.c report;

And, we must also change the input file to be:
2 x z

0 1 3

The resulting output file, 2sum.out, contains:
3 z x y

0 3 1 2

Thus we see that y is calculated given z and x. Although shown here for a very simple problem with a single
equation, this feature extends to more complex problems as well. The only requirement is that the model
and the designated input variables must form a well-posed problem, i.e., one for which a solution exists.

2.2.3 Problems with Several Objects

The previous examples were problems with a single equation, thus requiring only one SPARK object. Most
real problems involve more than one equation, and hence more than one object, raising the question of how
objects are interconnected in SPARK. The two examples below show how this is done.

The problem we consider first is as follows:

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 9

=+
=+
=+

765

643

521

xxx
xxx
xxx

 (2.3)

Obviously, each of these equations can be represented by an object of class sum. The diagram in Figure 2.2
shows how these objects would have to be interconnected to represent this problem.

x7

x5

x6

x1

x2

x3

x4

a
s1

b
c

a
s3

b
c

a
s2

b
c

Figure 2.2 The 4sum example.

The problem specification file for this problem contains the following code:

/* Add 4 numbers together */
/* 4sum.pr */
declare sum s1,s2,s3;
input x1 s1.a report;
input x2 s1.b report;
input x3 s2.a report;
input x4 s2.b report;
link x5 s1.c, s3.a;
link x6 s2.c, s3.b;
link x7 s3.c report;

Observe that the first link statement connects the problem variable x5 to the port c of s1 and a of s3,
demonstrating the basic object interconnection method of SPARK. Any number of object ports can be
specified following the problem variable name, causing all to be equated to the single problem variable
defined in the link statement. The link, input and declare statements (plus a few others yet to be discussed)
form the SPARK language. The complete language is presented in reference form in Section 4 (See page
71).

Because there are four input statements in 4sum.pr there must be a 4sum.inp file with values for the same
four variables. This file is formatted as follows:

4 x1 x2 x3 x4

0 1 1 1 1

As before, the leading number in the first line, 4, is the number of inputs. It is followed by as many
symbols, corresponding to input variables as defined in 4sum.pr. The first number in the second line is the
initial time, followed by values for each of the input variables.

The problem is built and executed using the same commands as for our 2sum example (See page 6). The
results are placed in 4sum.out which is formatted like the input file:

5 x4 x3 x2 x1 x7

0 1 1 1 1 4

SPARK 1.0 User's Manual

10 •••• Section 2 Examples

Several other files of interest are also produced when a SPARK problem is built and executed. First,
various files with the extension .log may appear in the workspace. As you might suspect, these contain any
error messages that may have been produced, as well as intermediate output from the numerical solution
step.

Also produced is the equations file, e.g., 4sum.eqs. For complex problems exhibiting numerical difficulties,
it is sometimes useful to examine this file because it contains the computation sequence determined by
SPARK and used to solve the problem. For 4sum this file contains:

Inputs:
 x4
 x3
 x2
 x1
Component 0:
 x6 = sum(x3, x4)
 x5 = sum(x1, x2)
 x7 = sum(x5, x6)

In this file, inputs are listed first, followed by a sequence of assignments to problem variables, each
computed by a right-hand-side function reference. These functions represent the inverses of the underlying
class equation. In this case there is only one component, and it contains three function references in a non-
iterative sequence. Later, we will see that in more complex problems SPARK will break problems down
into several components that can be solved independently. Note that here we use the word “component” in
a graph theoretic sense, meaning a group of nodes and edges, i.e., equations and variables, that can be
solved together; these have nothing to do with physical components. Some components are strongly
connected, meaning that there are cycles in that part of the graph. The practical significance of strongly
connected components is that the corresponding equations have to be solved simultaneously, by iteration.

As with the single object example, we can use the same model to solve different problems by changing what
is input and what is solved for. For example, suppose we want to specify x5 and determine x1. The
problem file is then:

/* Add 4 numbers together */
/* 4sum.pr */
/* */
declare sum s1, s2, s3;
link x1 s1.a report;
input x2 s1.b report;
input x3 s2.a report;
input x4 s2.b report;
input x5 s1.c, s3.a;
link x6 s2.c, s3.b;
link x7 s3.c report;

A suitable input file is:
4 x5 x2 x3 x4

0 2 1 1 1

After building and executing, the resulting 4sum.out file is:
5 x4 x3 x2 x7 x1

0 1 1 1 4 1

And the equations file shows the solution sequence:

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 11

Inputs:
 x4
 x3
 x5
 x2
Component 0:
 x6 = sum(x3, x4)
 x7 = sum(x5, x6)
 x1 = difference(x5, x2)

Just as you might do, based on Figure 2.2 (See page 9) SPARK evaluates s2 followed by s3 in the
“forward” direction yielding x6 and x7, then evaluates s1 in the “reverse” direction to get x1.

2.2.4 Problems Requiring Iterative Solution

Up to this point all of our examples have been such that non-iterative solutions could be found. In more
complex problems this may not be possible. For example, consider the set of equations below, in which c1
and c2 are given and x1, x2, x3 and x4 are to be determined.

=

=++

=

=+++

− 3

1

34

2
3
44341

12

12
2
231

x

x

exx

cxxxxx
exx

cxxxx

 (2.4)

This set of equations does not have a closed form solution, and is very difficult to solve by any means. In
fact, with some values of c1 and c2, it has no solution at all. However, with c1 = 3000 and c2 = 1 there is a
solution and SPARK can easily find it.

The problem can be specified for SPARK exactly as for simpler ones. Figure 2.3 shows a SPARK diagram
with objects and interconnections.

r3

r1

c
x1 x1x1

x2 x2x2
x3
x1
x3 x3x3

x4 x4x4
c

con1

con2

r2

r4

Figure 2.3 Four nonlinear equations.

In this case we have used four objects, each representing one of the equations. We assume for the moment
that there are classes r1, r2, r3, and r4 representing the equations in the order given previously, presumed

SPARK 1.0 User's Manual

12 •••• Section 2 Examples

to have been defined and placed in the class directory.1 The SPARK problem file can then be constructed
as follows:

/* Four nonlinear equations */
/* example.pr */
declare r1 r1 ;
declare r2 r2 ;
declare r3 r3 ;
declare r4 r4 ;
input con1 r1.c report;
input con2 r3.c report;
link x1 r1.x1 match_level = 0, r2.x1, r3.x1 report;
link x2 r1.x2, r2.x2 report;
link x3 r1.x3, r3.x3, r4.x3 report;
link x4 r3.x4, r4.x4 report ;

The two constants, c1 and c2 in the equations, are defined as inputs con1 and con2. In these input
statements, note that the port variables representing the c1 and c2 constants are called c in r1 and r3.
Similarly, in the link statements it is evident that the other port variables have the same names as the
corresponding problem variables. Normally, in the interest of code reuse, it is better to define a generic
class using local names for port variables, as we have done in the earlier examples. Here, however, where it
is unlikely that we will have need for other instances of these rather specialized objects, it would introduce
unnecessary confusion to employ different port and problem variable names. Hence the x1 problem variable
is linked to the x1 port variable of all objects in which it occurs, i.e., r1, r2, and r3.

A new SPARK language keyword, match_level, is used in this problem. The purpose of this keyword is to
provide a hint to SPARK on how to match certain variables to certain equations. Here, by placing the
match_level = 0 after the r1 port connection for x1 we are discouraging SPARK from using the r1 object,
i.e., the first equation, to calculate x1. Although most often SPARK can do without such hints, there may
be times when you have particular insights into the numerical properties of the problem, and the
match_level keyword provides one mechanism for capitalizing on this knowledge. For example, experience
with the current problem indicated that the above match_level restriction leads to a better solution sequence.
Unfortunately, it is not always easy to discover appropriate matching preferences, but when you do develop
the insight for a particular problem it is important to be able to control SPARK in this manner. This subject
is discussed further in Section 3.11.3 (See page 60).

The results of running SPARK on the problem so described, with values of 3000 and 1 for the constants c1
and c2, respectively, are shown below:

6 con2 con1 x4 x1 x2 x3

0 1 3000 0.288576 2.9273 54.6738 0.454716

Naturally, the values reported for x1 through x4 satisfy the given equations.

The equations file, example.eqs, shows how SPARK arrived at these answers:2

1 We will see how to define SPARK object classes in Section 2.4 (See page 14).

2 As is often the case for nonlinear problems, this example has multiple solutions. The solution found will
depend upon the starting point in the iterative solution process.

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 13

Inputs:
 con2
 con1
Component 0:
 x4 = r4_b(x3)
 x1 = r3_a(x3, x4, con2)
 x2 = r2_b(x1)
[break] x3 = r1_c(x1, x2, con1)
 = x3 [predictor]

We see there is a single component (called "Component 0") in the solution, meaning that this problem does
not allow partitioning. Within this single component, the function r4_b(x3) represents object r4, i.e., the
fourth equation in (2.4), solved for x4 in terms of x3. The value returned by the function is assigned to the
x4 problem variable. Similarly, r3_a(x3, x4, con2) represents object r3, i.e., the third equation, solved for
x1, r2_b(x1) is r2 solved for x2, and finally r1_c(x1, x2, con1) is r1 solved for x3. It is apparent that these
assignments form a cycle, i.e., x1 must be known to get x3, but x3 must be known to get x1. That is, the
component is strongly connected. Recognizing this, SPARK has selected x3 to break the cycle, i.e., a value
of x3 is guessed to start an iterative solution process. Thus after evaluating r1_c (using the guessed value of
x3 to get x4 and then x1 and x2) SPARK will use a prediction method for estimating a new value of x3 and
repeat the calculations from the first assignment. This will continue until the predicted and calculated
values of x3 agree to within the SPARK precision, which defaults to 10-6. At first, prediction is done with
the Newton-Raphson method. If convergence is not achieved, alternate methods can be tried. Usually,
convergence is obtained with the Newton-Raphson method.

The above functions are based on the respective object class equations. By chance, r4_b happens to be the
way the r4 equation was originally expressed, i.e., as a formula for x4 in terms of x3. However, r3_a is the
r3 object class rearranged symbolically, i.e.,

x c x x x x1 2 3 4 4
3

4= − −() /

This is called an inverse of the object. Part of the task of developing a SPARK class is performing these
symbolic inversions of the given equations, and embedding them in C++ functions. This is discussed in
Section 2.4.2 (See page 16).

2.3 Well Posed Problems
In Section 2.2.2 (See Page 8) we saw that SPARK allows us to change which problem variables are input
and which are to be solved for without changing the underlying model. This flexibility is the result of
specifying object models without a priori specification of inputs and outputs (Sahlin and Sowell 1989).
Thus we were able to solve for x5, x6, and x7 in the example Equation 2.3 (See Page 8) given x1 through x4,
or by a simple change of input and link designations solve for x1, x6, and x7 given x2, x3, x4, and x5.

It would be grand if we could say that this selection of the input and output sets was completely arbitrary.
For example, in the example of Section 2.2.3, Equation 2.3 (See page 8), there are 3 equations (objects) and
7 variables, so one might hope that any set of 4 inputs could be used to determine the remaining 3 variables.
However, we are constrained by what is mathematically possible. In many problems there are sets of inputs
that will not define a problem that has a solution. For example, if we specified x2, x3, x4, and x6 it is
impossible to determine a solution. From Figure 2.2 we see that if x3 and x4 are both specified then x6
cannot be specified. Moreover, there is no way to determine x1, x5, and x7 given only x6. Mathematically,
a problem is said to be well posed if it admits a solution. Thus with this input set we have an ill posed
problem.

SPARK 1.0 User's Manual

14 •••• Section 2 Examples

Naturally, SPARK has no ability to solve ill-posed problems.3 In the case here, SPARK can immediately
determine that the problem is not well posed; specifically, it discovers that there is no possible matching of
equations and variables. Other forms of ill posedness cannot be discovered until a numerical solution is
attempted. In such cases a lack of convergence will be reported. Unfortunately, however, lack of
convergence also may be the result of other numerical problems, such as improper starting values, so we
cannot always conclude that this means ill posedness. Problems of this nature are all too familiar to those
who routinely work with nonlinear systems of equations. Often, insights afforded by knowledge of the
physical problem under analysis suggest ways to fix the numerical problem. In seeking to resolve these
difficulties, we should be motivated by the realization that proper mathematical models of physical systems
are well posed. Otherwise, the physical system could not behave in the observed way.

In summary, SPARK offers a method for specifying and solving sets of equations, provided solution is
possible. But it should be no surprise that it cannot solve insoluble problems, and numerical difficulties
may be encountered as they would be in other solution methods.

2.4 Creating SPARK Atomic Classes
The examples so far have made use of existing SPARK object classes. In practice, it is often necessary to
create new object classes to meet special needs. This can be done either by hand, or with symbolic tools
such as the SPARK symbolic solver, or third-party tools like Maple, Mathematica or MACSYMA. Here we
will see the manual process. This will allow you to better understand the use of the symbolic tools, as
discussed in Section 3.8 (See page 49).

2.4.1 Class Definition

Creating a SPARK object is a two step process. First, you must create the object class definition. Second,
the inverse functions required by the class must be expressed in C++ following the SPARK function
protocol. The class definition and the supporting C++ inverse functions are stored in the same file with a
.cc extension. These steps are demonstrated below for the sum atomic class.

/* SPARK sum class definition */
#ifdef SPARK_PARSER
PORT a "Summand 1";
PORT b "Summand 2";
PORT c "Sum";
EQUATIONS {
 c = a + b;
}
FUNCTIONS {
 a = difference(c, b);
 b = difference(c, a);
 c = sum(a, b);
}
#endif /* SPARK_PARSER */
#include "spark.h"
/* "difference" inverse function*/
#define a args[0]
#define b args[1]
#define c result

3 Indeed, it is contradictory to even suggest it!

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 15

double difference(ArgList args)
{
 double result;
 c = a - b;
 return result;
}
#undef a
#undef b
#undef c
/* "sum" inverse function*/
#define a args[0]
#define b args[1]
#define c result
double sum(ArgList args)
{
 double result;
 c = a + b;
 return result;
}
#undef a
#undef b
#undef c

As shown above, it is customary to begin a class with comments, to describe what it does. After the
comment header comes the body of the class definition. This is placed within C-style #ifdef and #endif so
the file can be processed both by the SPARK parser and the C++ compiler.

The first part of the class definition is a list of the ports. It is through these ports that objects of the class
communicate with other objects. Although the port statement has additional optional clauses, the only
required part is the name of the port variable. Here, we also provide a description string that is used for
error reporting. The port variable name can be arbitrarily chosen and of any length and is placed following
the port keyword. Note that throughout the SPARK language user selected names are case sensitive.
However, keywords of the language are not. Thus either port or PORT will do, but a and A are considered
different port names. Like all SPARK statements, the port statement can span multiple lines if necessary.
Each port statement ends with a semicolon.

After the port declaration, the equation for the class can be given in the optional equations block.
Although SPARK atomic classes presently have a single equation, the possibility of multiple equations is
allowed for with the compound statement using braces, equations {…}.4

Following the equations is the functions {..} compound statement. A function for calculating each port
variable can be given between the braces. Here we define functions for calculating each of the three port
variables. Normally, this is the best practice, since it allows SPARK greatest flexibility and efficiency in
devising a solution strategy for various problems in which the class might be used. That is, some problems
may require c to be determined in terms of a and b, while in others it may be preferred to calculate b given
a and c. As we shall see below, each function is an inverse of the object equation.

For complex equations, some inverses may be difficult or impossible to obtain. Or, it may be that special
knowledge about the problem under investigation suggests that a particular inverse should not be used,
because, for example, it might lead to numerical difficulties. For these reasons, SPARK allows you to omit
unavailable or unwanted inverses. For example, we could simply omit the function for calculating a from
the sum class. Should the need to calculate c from a and b then arise in some problem using the class,
SPARK would have to perform the calculation iteratively.

4 The equations block is optional since SPARK currently does not process it. Future releases may
automatically generate the C++ functions based on the equation block.

SPARK 1.0 User's Manual

16 •••• Section 2 Examples

2.4.2 Inverse Functions Definition

After the class definition comes the definition of the inverse functions. These functions, supporting the
SPARK class definitions, are expressed as C++ functions. Although some familiarity with C++ would be
helpful here, you should be able to understand the discussion with background in any similar language.

The basic structure of an inverse function in a SPARK atomic class is:
double funct_name(ArgList args)
{
 // Code for calculating the result from the arguments,
 // returned as a double.
}

The arguments must be passed as an array of type ArgList. However, it is customary to alias elements of
this array to the symbols used in the equation. Also, the result is aliased to the symbol for the returned
variable. This practice not only makes the functions easier to read (and write!), but also simplifies their
automatic generation with symbolic tools. Note the #include "spark.h" which (indirectly) provides
the definition of ArgList.5

In our sum example above we used the C preprocessor #define directive to alias function arguments.
However, there are alternative ways to do this that take advantage of advanced C++ language features, for
example, reference variables and the const qualifier. A reference variable is declared with a preceding &
and is initialized in the declaration, e.g.:
double &x = y;

meaning that the identifier x is merely an alias for a previously declared identifier y; there is no separate
storage location for x. If const precedes the declaration, the reference variable cannot be changed from the
initialized value. Consequently, a const reference variable is functionally equivalent to a #define constant.

With these features we can write the previous function definition for sum, omitting the #define ‘s, as
follows:
double sum(ArgList args)
{
 const double &a = args[0];
 const double &b = args[1];
 double result;
 double &c = result;
 c = a + b;
 return result;
}

This is functionally equivalent to the previous code, but has the advantage of allowing type checking by the
compiler, and automatic type conversion when needed. The latter is important if the argument happens to
be used as an actual argument to another function that is called within the SPARK function. When #define
is employed in this case, most compilers will not be able to properly determine the function argument type.

Yet another way to express a SPARK inverse function in C++ is similar to the above, but does not use
reference variables on the arguments:

5 More precisely, ArgList is defined as a pointer to the TArgument class in value.h.

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 17

double sum(ArgList args)
{
 const double a = args[0];
 const double b = args[1];
 double result;
 double &c = result;
 c = a + b;
 return result;
}
The difference between these two styles is that in the latter there is local storage for the variables a and b,
and the arguments are copied into these locations every time the function executes, while in the former there
is no such storage or copying. The compiler will generate code that refers to the data where it is stored in
the caller. Thus the former is in principle more efficient. However, cursory testing has failed to show
significant empirical differences.

SPARK functions can be as simple as the above example, or quite complicated. The full expressive power
of C++ is allowed. Note also that code for existing models can be integrated by means of a function call.
Furthermore, by following the rules for mixed language programming in your environment, the referenced
functions can be in FORTRAN, Pascal, or assembly language. The principal requirement is that a single
result must be returned.6 Care should also be taken that the function not depend upon retained state, i.e.,
the value of a local variable from a previous call, since a SPARK problem may instantiate more than one
object using it. Perusal of some of classes in vspark\globalclass and hvactk\class directories may be
beneficial before beginning development of complex classes of your own.

2.5 Models of Physical Systems
The previous examples were purely mathematical in nature. They allowed us to discuss the basic ideas in
SPARK, unencumbered by details. Here we take up some of the other issues that arise when modeling
physical systems. In particular, we show how SPARK handles the problem of unit consistency, and range
of values for variables. Also, we show provision in SPARK for modeling at a level higher than individual
equations. Then, using these new ideas, we show the development of a SPARK model for a system of
modest complexity.

2.5.1 Units, Valid Range, and Initial Values

When simulating real physical systems, there must be consistency in the units of measure throughout the
problem. In terms of a SPARK problem specification, this means that the units of a problem variable linked
to an object port must be the same as the units assumed for the port variable when the object class was
defined.

SPARK has a limited capability to ensure unit consistency. This is provided by associating an optional unit
string with each port. Then the SPARK processor can check and report an error if you inadvertently
connect variables of different units. Also, you can give initial, minimum, and maximum values for the port
variable. For example, the cpair.cc class from the HVAC Toolkit has a port for the specific heat coded as
follows:
port CpAir "Specific heat of air" [J/(kg_dryAir*deg_C)]
 init = 1.0 min = 0.01 max = 5000.0;

6 Future releases of SPARK may allow multivalued objects, removing this restriction.

SPARK 1.0 User's Manual

18 •••• Section 2 Examples

The unit string is placed in square brackets […]. Any connection to this port will have to have an identical
units string. The min and max values have the obvious meaning; run-time warnings are issued when the
value is outside this range. The init value is used whenever SPARK needs a starting value and none is
provided elsewhere. For example, if the associated variable happens to be a break variable the very first
iteration will use the init value of 1.0 for CpAir.

In order for SPARK units checking to work to your benefit you must define a consistent set of units. Table
2.1 shows the SI units used in the HVAC Toolkit (See Appendix A Using the HVAC Tool Kit on page 81).
Other consistent sets could be used instead. Note that the units and value ranges given in Table 2.1 are not
built into SPARK; they are simply the units employed in the HVAC Toolkit class library. However, they do
serve as an example of a consistent set of units. When developing SPARK models you have the choice of
adhering to these units, or developing your own library with whatever units you choose. Obviously, you
should be consistent with whatever unit system you choose. Otherwise, you will have to implement special
unit conversion objects when your objects are connected. The init, min, and max values should be set as
appropriate for each port.

Table 2.1 SPARK Units (SI) used in the HVAC Toolkit.

Unit String Description Initial Minimum Maximum

[-] Unspecified 0. -1000000. 1000000.

[J/kg_dryAir] Enthalpy, air 25194.2 -50300.0 398412.5

[J/kg_water] Enthalpy, water 25194.2 -50300.0 398412.5

[kg_water/kg_dryAir] Humidity ratio .002 0.0 0.1

[kg_dryAir/s] Mass flow rate, air 10000. 1000. 1000000.

[kg_water/s] Mass flow rate, water 10. 0. 1000.

[deg_C] Dry bulb temperature 20. -50. 95.

[m^3/kg] Specific volume, fluid 1.0

[m^3/kg_dryAir] Specific volume, air 0.8332 0.6 1.6

[kg/m^3] Ratio of total (air plus
moisture) mass to volume

1.2026 0.6 1.8

[J/kg] Enthalpy, steam

[J/(kg*deg_C)] Specific heat, fluid 1.0 0.01 5000.0

[J/(kg_dryAir*deg_C)] Specific heat, air 1.0 0.01 5000.0

[kg/s] Mass flow rate, fluid 0.0

[m^3/s] Volumetric flow rate, fluid 1

[m] Distance 1

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 19

[m^2] Surface area 0.

[W] Power 1 -10000 10000

[Pa] Pressure 101325 0 110000

[W/deg_C] U*A, heat transfer 0 -1.0E6 1.0E6

[s] Time, seconds 0.0 0 1.0E30

[fraction] Any ratio 1.0 0.0 1.0

[scalar] Any non-dimensional 1.0 -1.0E30 1.0E30

To demonstrate, consider the sercond.cc class from the HVAC tool kit, which models two conductors in
series. The ports are defined as:
PORT U1 "Conductance 1" [W/deg_C];
PORT U2 "Conductance 2" [W/deg_C];
PORT UTot "Overall conductance" [W/deg_C];

Then, when the sercond class is used in a problem definition you have to give matching unit strings at each
link or input statement for the problem variables connected to the ports of sercond:
declare sercond sc;
input UA1 sc.U1 [W/deg_C] report;
input UA2 sc.U2 [W/deg_C] report;
link UATotal sc.UTot [W/deg_C] report;

The SPARK parser can then check to be sure you have not made a units error; if the units string in a link or
input does not match those of all port variables in the same statement, a units error will be reported.

There are times when you may not want strict enforcement of unit consistency. For example, the sum
object class is used in many places, sometimes adding heat flux and other times mass flow rates. If we
insisted on strict unit consistency, we would have to have a separate sum class for every different case. To
avoid this problem, and to allow for problems where units are not important, there is an unspecified unit
identifier. Units on a port are unspecified when you do not give any unit information, or when you
explicitly declare unspecified units with [-] as the unit identifier. When a port has unspecified units, no unit
checking is done on links to that port.

2.5.2 Macro Objects

Because SPARK uses a computation graph based on individual problem variables and equations, the
SPARK object must be a single equation. While this is an advantage for efficient solving, the disadvantage
is the tedium of defining a large system model entirely in terms of individual equations. When modeling
physical systems, it is sometimes more convenient to work in terms of larger elements, such as models of
physical components or subsystems. Such models most often will involve several equations and variables
rather than one.

We have already mentioned in Section 2.4.2 (See page 16) that one way to include more complex models is
by placing the equations within the C++ functions required by ordinary SPARK atomic classes. However,
this is a very limited idea. One limitation is that only a single result can be communicated to the rest of the
problem, even though many variables may be determined in the process. Another is that the user becomes

SPARK 1.0 User's Manual

20 •••• Section 2 Examples

responsible for devising an algorithm for the function, thereby bypassing one of SPARK's most unique
capabilities.

Macro classes let you to
work at a high level of
abstraction, while
allowing SPARK to
employ efficient, equation-
based solution strategies.

The macro class provides a better mechanism for allowing more complex
SPARK classes. It allows multiple atomic classes, and even other macro
classes, to be assembled into a single entity for use by the model builder.
Macro classes are used in problems or in other macro classes exactly like
atomic classes, i.e., by use of the declare keyword. However, when
processed by the SPARK parser, any declared macro objects are separated
into atomic objects so that the graph-theoretic solution methods can be
applied in the normal manner. This allows you to work at a high level of
abstraction, while allowing SPARK to employ efficient, equation-based
solution strategies.

As an example of the need for a macro class, consider the flow of air in a duct network, such as might occur
in a heating system for a building. In simulation of systems like this there is a need for models of various
components such as diverters that split the flow into two streams and mixers that merge the flow of two duct
sections into one. Here, let's focus on the mixer and devise a model for it in the form of a SPARK macro
class.

The diagram in Figure 2.4 shows the mixer component.

Figure 2.4 Dry air mixer.

The air duct mixer model must include two laws from physics: conservation of mass and conservation of
energy. These can be expressed in the following equations:

332211

321

=+
=+

hmhmhm
mmm

 (2.5)

where m represents mass flow rate and h represents the enthalpy of the air streams. The subscripts 1 and 2
represent the conditions at the two inlets, and 3 that at the outlet.

To construct a macro object class for the mixer we shall assume that we already have object classes for the
mass and energy balance equations. Actually, the mass equation can be represented with the familiar sum
class. Also in the SPARK object library there is an object class called balance that represents equations
like the enthalpy one. The port variables analogous to m and h are m and q respectively.

The macro class will connect the constituent classes exactly as if we were creating a problem definition file.
Constituent class port variables that are to have the same meaning in the context of our new macro class are
linked together, forcing equivalence. Those that are to be available for interfacing to problems or other
macro classes are "elevated," i.e., made port variables of the macro class.

Figure 2.5 shows this idea and serves as a guide in writing the macro class. Because all represent the same
quantity, the macro port variable m1 must be connected to the a port of the sum class and the m1 port of

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 21

the balance class. Other port variables are linked in a similar manner. The SPARK expression of this is
shown below.

m1

m2

h1

h2

s
a
b

c

m1
q1
m2
q2

b m
q

m3

h3

Figure 2.5 Mixer macro class diagram.

/* SPARK Mixer Object Macro Class
 *
 */
port m1 "Stream 1 mass flow rate" [kg_dryAir/s];
port m2 "Stream 2 mass flow rate" [kg_dryAir/s];
port m3 "Stream 3 mass flow rate" [kg_dryAir/s];
port h1 "Stream 1 enthalpy" [J/kg_dryAir];
port h2 "Stream 2 enthalpy" [J/kg_dryAir];
port h3 "Stream 3 enthalpy" [J/kg_dryAir];
declare sum s;
declare balance b;
link mass1 .m1, s.a, b.m1;
link mass2 .m2, s.b, b.m2;
link mass3 .m3, s.c, b.m;
link enthalpy1 .h1, b.q1;
link enthalpy2 .h2, b.q2;
link enthalpy3 .h3, b.q;

It will be observed that this is very much like a problem definition. The principal difference is the absence
of inputs. Also, note that a macro class has ports, whereas a problem does not. Ports provide the interface
to the outside. That is, when an object of this class is used, connections will be made to its ports. The
internal links, on the other hand, are not exposed to the outside at all. If you want a variable represented by
a macro class link to be available for outside connections, you must connect it internally to a port. For
example, the line:
link mass1 .m1, s.a, b.m1;

means that the link named mass1 connects the m1 port of the mixer macro class to the a port of s and the
m1 port of b.

Note the dot (.) in front of the first connection following the link names in the above example. The
rationale for the dot syntax is based on the general connection notation x.p, where we are referring to the p

SPARK 1.0 User's Manual

22 •••• Section 2 Examples

port of x object. When the port in question belongs to the macro class being defined, as opposed to one of
its constituents, the class name is that of the very class we are defining, and therefore is not expressed.7

The similarity between macro classes and problems makes it common practice when developing a macro
class to first test it as a problem. For example, you could develop the mixer class as a problem, saving it in
a file with .pr extension. Once it is working properly, you simply change the inputs to links, add ports for
the variables needed at the interface, connect the corresponding links to these ports, and save it as a .cm file.

You may have noticed in the above example that the name of links, e.g., mass1, are not used anywhere.
This is because we express the internal connections entirely in terms of the class and port names, as in s.a,
or with an implied class name and port name as in .m1. Because link names are not used, they are optional
when defining macro classes. That is, we could write:
link .m1, s.a, b.m1;

instead of the previous statement with exactly the same effect. In contrast, link names are required for
problems, as these are the names by which we know the problem variables. Further discussion of link
names is provided in Section 3.6 (See page 47).

Note that we have included unit strings in the ports. This will prevent you from connecting inappropriate
links to objects of the mixer class. Also, we could have placed unit strings in the links to allow unit
checking of the links to the ports of the classes which are used in the macro. We elect not to do so here,
however, because both sum and balance are mathematical classes with generic ports.

Finally, note that macro classes are entirely equivalent to normal SPARK classes in terms of usage. They
can be used in creating problem specification files, or in building other macro classes. The SPARK parser
recursively expands the macro objects as it generates the solver code.

2.6 Differential Equations
Thus far we have focused on problems with only algebraic equations. However, many simulation problems
are dynamic in nature and involve differential equations as well. That is, some of the problem variables
appear as derivatives with respect to time. In this Section we see that SPARK is capable of representing
and solving such problems. We begin with a brief review of numerical methods used in solving ordinary
differential equations.

2.6.1 Numerical Solution of Differential Equations

Numerical solution methods for differential equations start with given initial values of dynamic variables8
and attempt to project to a new solution a short time later. When the differential equation is part of a larger
system of equations the entire set must be solved at each point to ensure accuracy. The process is then
repeated, with the newly calculated values becoming the basis for the next projection forward. The amount
by which time is advanced at each projection is called the time step, referred to as TimeIncrement in the run
control file. Generally speaking, the time step has to be small in order to achieve sufficient accuracy of the
solution. Since simulations are often carried out over long periods of time, many small time steps are
required. Computational efficiency is therefore very important.

7 In some object oriented languages, such as C++, the name of the class being defined is known internally
as this. In SPARK we chose to have the name this be understood rather than expressed.

8 Here we shall call variables appearing in differential form dynamic variables

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 23

The projection is done by means of an integration formula involving current and/or past values of the
variables and their derivatives. For example, the simple Euler integration formula f is:

()x f x x x hxp p p p= = +, & & (2.6)

where x is the dynamic variable, &x is its derivative with respect to time, and h is the time step. Note that
the Euler formula involves variable and derivative values only from the previous time, indicated by the
subscript p. This is called an explicit formula because it gives the new solution explicitly, i.e., without
reference to unknown values at the end of the time step. On the other hand, some integration formulas do
involve values of the dynamic variables at the new time, i.e.,

x f x x x xp p= (, & , , &) (2.7)

Such formulas are called implicit because they involve values at the new point as well as past values.9
Obviously, iteration is required for implicit integration formulas, while not for explicit integration formulas.
The aim of the more complex formulas is to get improved accuracy and numerical stability with larger time
steps.

2.6.2 How SPARK Deals with Differential Equations

SPARK deals with differential equations by introducing object classes to represent integration formulas.
These can be from the SPARK globalclass library, or user defined. You can define many different kinds of
integration object classes, ranging from simple explicit formulas such as Euler’s to complex implicit
formulas used in predictor-corrector methods. Unlike other simulation languages, SPARK even allows you
to use different integration formulas in different parts of the same problem.

Below we will learn how to solve a simple differential equation. We will first use integrators from the
SPARK library, and then see how integrator object classes are created. In Section 2.7 (See page 28) this
will be extended to a more complex problem with mixed algebraic and differential equations.

2.6.3 Solving a Simple Differential Equation

As a simple example, consider the differential equation:

0)0(; xxbaxx ==+& (2.8)

where &x is understood to be the derivative of x with respect to time, t, the independent variable. We see
this to be a well-posed problem; given a , b , and 0x it can be readily solved for ()tx .

To achieve a numerical solution in SPARK we view the derivative as a separate dependent variable. In
order to preserve the balance between equations and variables, this additional variable requires an
additional equation to be added to the set. An integration formula provides this needed equation, giving the
value of x at the next point in time. If we employ the Euler formula, Equation 2.6, the set of equations to be
solved is:

9 The terms open and closed are sometimes used instead of explicit and implicit, respectively.

SPARK 1.0 User's Manual

24 •••• Section 2 Examples

+=
==+

pp xhxx
xxbaxx

&

& 0)0(;
 (2.9)

It is seen that we again have a well-posed problem, two equations in the two variables x and &x . Since both
equations are algebraic, they can be easily solved by the established SPARK methodology.

This example is simple, but the method is general. Regardless of problem complexity, we simply introduce
a new problem variable for every (first order) derivative, and at the same time introduce an integrator object
for the dynamic variable.

The SPARK solver then has an algebraic problem to deal with. Observe also that implicit integration
formulas require no special consideration. Such formulas involve the x at the new time, i.e., are implicit in
x:

),,,(xxxxfx pp &&= (2.10)

But this is of no concern, because the SPARK solver anticipates that an iterative solution process may be
necessary due to the possibility of other cycles in the problem. The implicit integration formula is simply
one more equation to be converged through the normal iteration.

One other issue needs to be dealt with, and that is preserving past values of dynamic variables and their
derivatives. From Equation 2.6 (See page 23) we see that the Euler integration formula uses values of x and
&x from the previous time to calculate x at the new time. Some integration formulas use values of these

quantities from earlier time steps as well. In order to provide these past values, SPARK provides four past
values for all problem variables. This allows definition of a wide range of practical integrator classes.10

xdot x
xDot c

a
b

c
p

a

b

ax

dt

s
ab

c
dt x

Figure 2.6 First order differential equation diagram.

With these ideas we can continue with our example. Figure 2.6 shows a SPARK diagram for our
differential equation. We use an instance of the safprod object class, p, to form the ax product, and an
instance of the sum object class, s, to form the sum &x ax+ . We then link the a port of s and the &x port of
the Euler object, c, using a problem variable called xDot. This causes the x port of c to carry the problem
variable, x, which we also link to one of the multiplicand ports of p.

10 If needed, SPARK can be reconfigured to allow more past values.

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 25

/* First order differential equation
 * xdot + a*x = b
 * frst_ord.pr
 */
declare safprod p;
declare sum s;
declare euler c;
input a p.a;
input b s.c;
link dt c.dt global_time_step;
link x p.b, c.x report;
link xDot s.a, c.xdot;
link ax s.b, p.c;

The values of a and b, must be placed in an input file, frst_ord.inp. Also, when you solve differential
equations it is necessary to provide initial conditions for each dynamic variable. In SPARK there are two
ways to accomplish this. One way is to place init=value in the link statement for the variable.
Alternatively, you can specify the initial values by giving the initial time and associated initial values for the
dynamic variables in the input file. This is preferable if you want to carry out parametric runs with different
initial conditions without changing the problem specification file. To demonstrate the latter method,
suppose a and b are 1.0 and 1.0, respectively, the initial time is to be 0, and x is to have an initial value of 0.
Then frst_ord.inp should be:

3 a b x

0 1.0 1.0 0.0

Since x is a dynamic variable rather than specified as input, its value will be read from the input file only at
start-up. In some numerical integration methods require values of dynamic variables and their derivatives
at times earlier than the initial time. When needed, these values can be provided in the same manner, using
time values earlier than the problem initial time (i.e., negative time if initial time is 0).

Note that the units of time are not defined in SPARK, so you are free to choose whatever time units you
wish. You simple develop your differential equations to reflect your choice. For example, if in the above
differential equations x is measured in meters and &x is to be in meters/second, the coefficient a must have
units of reciprocal seconds and b must have units of meters/second.

The run control file needed to run this problem, frst_ord.run, is:
(
InitialTime (0.0 ())
FinalTime (5.0 ())
TimeIncrement (0.015625 ())
FirstReport (0.0 ())
ReportCycle (0.03125 ())
InputFiles (frst_ord.inp ())
OutputFile (frst_ord.out ())
)

We ask for the solution over a time range of 0 to 5 seconds, with a time step of 0.015625.11 The link for dt
includes the global_time_step keyword. This propagates the time step specified in the run control file to
wherever it may be needed in the problem and macro classes. The requested output at every other time step
is written to frst_ord.out. The results are plotted in Figure 2.7, generated by opening frst_ord.out with

11 Although the time step can be any wanted value we choose 1/26 =0.015625 because powers of 2 can be
represented exactly in the binary storage format used internally. Step sizes that are not powers of 2 are
difficult to synchronize with reporting intervals.

SPARK 1.0 User's Manual

26 •••• Section 2 Examples

Microsoft Excel. Alternatively, you could use the free-use plotting program provided with WinSPARK,
wgnuplot. (See Section. 3.12, page 63).12

0

0.5

1

1.5

0 1 2 3 4 5
Time

x

Figure 2.7 Results for frst_ord problem.

2.6.4 SPARK Library Integrator Object Classes

The SPARK library has several integrator object classes. These are shown in Table 2.2. All of these
methods are fully described in numerical analysis texts so we will just describe them briefly here.

Table 2.2 Integrator Object Classes in the SPARK Library.

Method Class file

Euler integrator (explicit) euler.cm

Implicit Euler integration implicit_euler.cc

Backward-forward difference bfd.cc

4th-order backward - forward difference bd4.cc

Adams-Bashforth-Moulton abm.cc

The Euler object is based on the simplest of all methods, using only the derivative at the beginning of the
time step. The implicit Euler method is the same basic idea as the normal (explicit) Euler method except
the derivative is estimated as the average of that at the beginning and that at the end of the time step. The
backward-forward difference method is only slightly more complex, using the derivative at the end of the
time step as well as at the beginning. The 4th-order backward-forward difference method uses additional
previous values and derivatives. These bfd methods are often used for "stiff" differential equations sets
(Press, Flannery et al. 1988).

12 Although not included in the VisualSPARK release, gnuplot is available at various Internet sites and will
run on UNIX as well as Windows platforms.

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 27

The Adams-Bashforth-Moulton method is a predictor/corrector method. Such methods employ two
separate integration formulas, a predictor to make an initial estimate of the new solution, and a corrector to
refine the solution iteratively. Naturally, the predictor is an explicit formula, while the corrector is implicit.

2.6.5 Creating SPARK Integrator Object Classes

If none of the library integrator object classes are suitable, you can define your own. SPARK integrator
object classes are created much like any other object class. To see how this is done, let’s look at the
definition of the Euler class. The port variables are the dynamic variable x, its derivative xdot, and the
time step dt. An inverse is given for a single port variable, the dynamic variable x.13

The port variables are the dynamic variable x, its derivative xdot, the time step dt. An inverse is given for a
single port variable, the dynamic variable x.

/* euler.cc */
#ifdef spark_parser
port x;
port xdot;
port dt;
functions {
 x = euler(x,xdot,dt);
}
equations {
 x = x_p + dt*xdot_p;
}
#endif /*spark_parser*/
#include "spark.h"
double euler(ArgList args) {
 const double x_p = args[0][1]; // previous x
 const double xdot_p = args[1][1]; // previous xdot
 const double dt = args[2]; // time step
 if (::IsInitialTime())
 return args[0].GetInit();
 else
 return x_p + dt*xdot_p;
}

The function Euler employed in the class definition is expressed in C++ after the class itself. It is basically
an expression of the Euler integration formula, Equation 2.6. As might be surmised from the code,
args[i][1] refers to the value of the ith argument one time step back. Since the first argument is x and the
second is xdot, args[0][1] and args[1][1] are the previous values of x and xdot, respectively. Initializing
const doubles, x_p, xdot_p and dt, to corresponding elements of the args array is equivalent to #define used
in earlier examples (See Section 2.4.2, page 16).

The heart of the function is the line:
 return x_p + dt*xdot_p;

which represents the Euler formula. The right hand side adds the time step multiplied by the derivative at
the beginning of the time step to the variable at the same time. This is the new value of the dynamic
variable, which is then returned. This gets executed at every solution time except the first. When time is

13 Theoretically, SPARK would not care whether the integration formula was used to calculate the dynamic
variable or its derivative. As a token to the sensibilities of most numerical analysts, however, here we
restrict this relationship to be a formula for the dynamic variable.

SPARK 1.0 User's Manual

28 •••• Section 2 Examples

InitialTime, the function returns the user-specified initial value of the dynamic variable (See Section 3.1,
page 37).

More complex integrators, differing primarily in the use of more previous terms, may be found in the
SPARK globalclass directory. There it will be seen that args[i] two steps back is written x[i][2], and so
on. Users with special needs can reconfigure SPARK to work with any number of previous values of any
class argument.

In addition to using a single previous value, the integrator in this example is also simplified in another way.
As presented, it uses the same variable name, x, to represent both the new value to be computed at the time
step and the previous value. That is, euler.cc has the line:
 x = euler(x, xdot, dt);

where x appears on both sides. Written this way, the SPARK parser will assume that we are using the
current-time value of x in the right hand side of the integration formula, whereas in fact it is the previous-
time value of x that occurs there (See Equation 2.9, page 24). Since the code for the corresponding C++
function euler() actually uses only the previous value of x on the right hand side, namely args[0][1], Euler
integration will be properly applied at execution time. However, the disadvantage of the way we have
coded it here is that the generated solver will include an unnecessary iteration loop. A better way to
implement integrators is discussed in Section 3.9 (See page 51).

2.7 A Larger Example: Air-Conditioned Room
As a more realistic simulation example let us consider a simple air-conditioned room as shown in Figure
2.8.

Ta

Qwall

Tosa

Qfloor

m
Tin

pc

T

Tfloor

Figure 2.8 Temperature controlled room.

It is supplied by air at temperature Tin. The flow rate of supply air is &m , which is controlled by a
proportional controller acting in response to the difference between room air temperature, Ta, and the set
point, limited between maximum and minimum values Tmin and Tmax. Heat Qwall is transferred through the
external envelope in proportion to the outside-to-inside temperature difference. Also, heat Qfloor is
transferred from the floor slab to the room air in proportion to the temperature difference between these two
bodies. Accounting for the heat capacity of the floor slab, the mathematical model for this system can be
written:

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 29

()
()

()

() ()
()

−
−

⋅−=

=⋅

−=

−⋅=

−⋅=
−⋅=

minmaxa

floorfloorfloor

wallflowfloor

ainflow

floorafloorfloor

osaawallwall

CpmCpm
TT

CpmCpmTTCpm

QTMCp

QQQ
TTCpmQ

TThAQ
TTUAQ

&&
&&

&

&

&

,,minmax
minmax

minmax
min

 (2.11)

where:

UAwall is the wall conductance,

Tosa is the outside air temperature,
hAfloor is the floor to room air conductance,
Tfloor is the floor slab temperature,
Ta is the room air temperature,
Qwall is the heat flow from room air to walls,
Qfloor is the heat flow from room air to floor,
Qflow is the heat added (+) or removed (-) from the room due to air flow,

&mCp is the supply air capacity rate,
MCpfloor is the floor slab heat capacity,

maxCpm& is the maximum supply air capacity rate,

minCpm& is the minimum supply air capacity rate,

Tmin is the room temperature at which supply air capacity rate is maximum, and
Tmax is the room temperature at which supply air capacity rate is minimum.

SPARK 1.0 User's Manual

30 •••• Section 2 Examples

response

signal

response_hi
response_lo
signal_lo
signal_hi

pc
U12

T1
T2
q

flow

U12

T1
T2
q

walls

U12

T1
T2
q

floor

a
b

c

net

dt
xdot

x

c

b
c

a

rate

Tin

mcp

Ta

Q flow

Q wall

Tosa

UA

hA dt

Mcp

T floor

Q floor T floor dot

max_cap
min_cap
T_set_low
T_set_high

Figure 2.9 SPARK diagram for temperature controlled room (See macro class room_fc.cm).

The first two equations express the relationship between the temperature differences and heat flow to the
room air, while the third gives the heat removal rate due to the stream of conditioned air. The next two
give, respectively, the heat storage rate of the floor slab, Qfloor, and the rate of change of energy stored in the
slab, floorfloor TMCp &⋅ ; of course, these quantities are equal. The last equation is the proportional control
expression, stating that the air stream cooling capacity is proportional to the difference between room air
temperature and the set point, limited between maximum and minimum values.

This system can be represented by seven SPARK objects as shown in Figure 2.9. The three heat transfer
equations are represented by the objects flow, walls, and floor, all of which are instances of the HVAC tool
kit class called cond (a conductor) having the form:

()2112 TTUq −⋅= (2.12)

The slab heat storage rate relationship is represented by a diff object called net. Also, a safprod object
called rate is required to form a product between the slab heat capacity, MCp, and the rate of change of slab
temperature, T_floor_dot. An integrator object called c implements the backward-forward difference
formula to get T_floor from T_floor_dot. Finally, the proportional controller is implemented by the class
called propcont from the HVAC Toolkit (See Appendix A on page 81).

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 31

Because several rooms are often required in a complete problem, we implement the diagram in Figure 2.9
as a SPARK macro class called room_fc.cm, as shown below:

/* Massive Floor Room, with Controller
 * Macro
 * room_fc.cm
 */
// Temperatures
PORT Ta [deg_C] "Room air temperature";
PORT T_floor [deg_C] "Room floor temperature";
PORT T_floor_dot [deg_C/s] "Room floor temperature rate of change";
PORT Tosa [deg_C] "Outside air temperature";
PORT Tin [deg_C] "Supply air temperature";

PORT UA [W/deg_C] "Wall conductance";
PORT hA [W/deg_C] "Floor to air conductance";
PORT mcp [W/deg_C] "Supply air heat capacity rate";
PORT Mcp [J/deg_C] "Floor mass heat capacity";

// Proportional controller
PORT T_set_high [deg_C] "Set point temp, high";
PORT T_set_low [deg_C] "Set point temp, low";
PORT max_cap [W/deg_C] "Max supply air capacity rate";
PORT min_cap [W/deg_C] "Min supply air capacity rate";

// Heat transfers
PORT Q_flow [W] "Heat added (+) /removed (-) by air stream";
PORT Q_wall [W] "Wall heat transfer";
PORT Q_floor [W] "Heat from air to floor";

PORT dt [s] "Time step for T_floor differential";

DECLARE cond flow; // Air mass flow "conductor"
DECLARE cond walls; // Walls conductance
DECLARE cond floor; // Floor to air conductor
DECLARE diff net; // Diff between Q in and out
DECLARE safprod rate; // Multiply T_floor_dot* Mcp
DECLARE propcont pc; // Proportional controller
DECLARE bfd c; // Backward-forward difference integrator

LINK .Tosa, walls.T2;
LINK .Tin, flow.T1;
LINK .UA, walls.U12;
LINK .hA, floor.U12;
LINK .mcp, flow.U12, pc.response;
LINK .Mcp, rate.a;
LINK .T_set_low, pc.signal_lo;
LINK .T_set_high, pc.signal_hi;
LINK .max_cap, pc.response_hi;
LINK .min_cap, pc.response_lo;
LINK .Q_wall, walls.q, net.b;
LINK .T_floor, floor.T2, c.x;

SPARK 1.0 User's Manual

32 •••• Section 2 Examples

LINK .T_floor_dot, rate.b, c.xdot;
LINK .Q_floor, floor.q, net.c, rate.c;
LINK .Ta, flow.T2, walls.T1, floor.T1, pc.signal INIT=20.0;
LINK .Q_flow, flow.q, net.a;
LINK .dt, c.dt;

This macro can be used to define a single-room problem as follows:

/* Air-conditioned Room
 * room_fc.pr
 */
DECLARE room_fc room;

INPUT Mcp room.Mcp [J/deg_C];
INPUT UA room.UA [W/deg_c];
INPUT hA room.hA [W/deg_C];
INPUT Tosa room.Tosa [deg_C];
INPUT Tin room.Tin [deg_C];
INPUT T_set_high room.T_set_high [deg_C];
INPUT T_set_low room.T_set_low [deg_C];
INPUT max_cap room.max_cap [W];
INPUT min_cap room.min_cap [W];

LINK dt room.dt [s] GLOBAL_TIME_STEP;
LINK mcp room.mcp [W/deg_C] REPORT;
LINK Q_flow room.Q_flow [W] REPORT;
LINK Q_wall room.Q_wall [W] REPORT;
LINK Q_floor room.Q_floor [W] REPORT;
LINK Ta room.Ta [deg_C] BREAK_LEVEL=10 REPORT;
LINK T_floor room.T_floor [deg_C] INIT=30 REPORT;
LINK T_floor_dot room.T_floor_dot [deg_C/s] REPORT;

Here we have declared room as an instance of the room_fc macro class. The room thermal characteristics
and control settings are defined as inputs. This alone would be sufficient to completely specify the problem
since the necessary linkages are all internal to the room_fc macro class. However, if we did not put some
link statements in the problem file, SPARK would have no problem variables and hence nothing to report.
We therefore introduce link statements to get reports on the room air temperature, Ta, floor slab
temperature, T_floor, cooling rate of the air stream, Q_flow, and the air stream capacity rate, mcp.
Alternatively, one could use the probe keyword, Section 3.7 (See Page 49).

The input data for this problem is shown in Table 2.3 (See Page 36). Note that the supply air temperature is
initially 13°C, and is raised to 17°C at 20 hours (72,000 seconds) after starting. The room_fc.inp file to
specify this is constructed as shown below:

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 33

9 hA UA Tosa Tin Mcp T_set_low T_set_high max_cap min_cap

0 60 30 38 13 1.e6 23 24 50 0

71964 60 30 38 13 1.e6 23 24 50 0

72000 60 30 38 17 1.e6 23 24 50 0

*

In the first line the first item, 9, is the number of problem input variables. The next nine items in this line
are the names of the input variables as defined in the input statements in the problem specification file. The
data that follow give the times (in this case, seconds) and values for the inputs at discrete points throughout
the intended simulation period. The first line, with a time value of 0, gives the initial conditions. We
specify Tin to be set at 13°C from time 0 to 19.99 hours (71,964 seconds), and 17°C from 20.0 hours
(72,000 seconds) forward. Other values are constant throughout the simulation. SPARK will interpolate
linearly between the given time values to arrive at the value of all input variables at each solution point as
the simulation proceeds.14 The last line has an asterisk, *, meaning that all values remain fixed from that
point forward.

It will be observed that the time unit in the above example is seconds. While there is a certain awkwardness
with this choice, it has the advantage of allowing the other problem variables to be expressed in true SI
units. For example, had we chosen to use hours instead of seconds, the time values would be the (perhaps)
more pleasing sequence 0, 19.99, 20.00, but then we would have had to express input data such as hAf in
J/(hour*deg_C) instead of W/deg_C.

Another observation in this example is that some input values do not vary with time, and this leads to many
repeated values in the file. While there is nothing wrong with repeating the constant values as done here,
there are alternatives that you may want to consider. Perhaps the best way to deal with this situation is with
multiple input files, as discussed in Section 3.4 (See page 43). Another way to deal with a constant input
variable, not necessarily recommended, is simply to omit it from the input file. This sometimes works
because problem input variables not listed in an input file will assume their init values, if available. Init
values are specified in the port statement (Section 4.9, page 74) when SPARK classes are defined. If the
class does not provide init values, or the provided values are not acceptable, you can also give an init value
on a link connected to the port. The disadvantage of doing it this way is that the problem must be rebuilt
whenever init values are changed.

However provided, running the room_fc problem with the data in Table 2.3 produces the results plotted in
Figure 2.10 and Figure 2.11 (See Page 34).15

All inputs are constant except Tin, which starts at 13°C and is increased to 17°C at 20 hours (72,000 s).
The first of these plots, Figure 2.10, shows the controlled quantity, mcp, and we see that it remains at its
maximum value for about six hours. During this period the room air temperature, Figure 2.11, is being
rapidly reduced. Once within the range of proportional control, the supply capacity rate modulates,
maintaining the room air temperature close to the set point. The slab temperature gradually cools. At the
twentieth hour, the scheduled change in supply air temperature takes place, causing the supply capacity rate
to increase to the maximum. However, this maximum is insufficient so the air temperature rises above the
set point.

14 Note that there must be some time difference between successive points to allow legitimate interpolation.

15 To get these plots we opened the output file with Microsoft Excel. Alternatively, gnuplot could be used.

SPARK 1.0 User's Manual

34 •••• Section 2 Examples

mcp (W/deg_C)

35

40

45

50

55

0 18000 36000 54000 72000 90000 108000

Time (s)

Figure 2.10 Supply Air Capacity Rate.

20

21

22

23

24

25

26

27

28

29

30

0 18000 36000 54000 72000 90000 108000
Time (s)

Te
m

pe
ra

tu
re

s
(d

eg
_C

)

Ta

T_floor

Figure 2.11 Room and Floor Slab Temperatures.

 SPARK 1.0 User's Manual

 Section 2 Examples •••• 35

The room_fc.eqs file, below, reveals how SPARK solves this problem. We see that there is a single
strongly connected component, with two break variables, Ta and T_floor. The initial values of Ta is taken
from the init values found in the macro or underlying atomic classes, since it is not mentioned in the input
file, and no init value is given in the link statement in the problem file. T_floor is initialized at InitialTime
at the init value given in the link statement in the problem file. These plus the problem inputs allow the
indicated sequence of calculations. The component is iterated to convergence at each time step.

DT:
 dt <- dt
Inputs:
 max_cap
 min_cap
 T_set_high
 T_set_low
 Mcp
 hA
 UA
 Tosa
 Tin

Component 0:
 mcp = propcont(Ta, T_set_low, T_set_high, min_cap, max_cap)
 Q_flow = cond_q(Tin, Ta, mcp)
 Q_wall = cond_q(Ta, Tosa, UA)
 Q_floor = diff_difference(Q_flow, Q_wall)
 T_floor_dot = safprod_quot(Q_floor, Mcp)
[break] T_floor = bfd(T_floor, T_floor_dot, dt)
 = T_floor [predictor]
[break] Ta = cond_T1(Q_floor, T_floor, hA)
 = Ta [predictor]

SPARK 1.0 User's Manual

36 •••• Section 2 Examples

Table 2.3 Input for the Controlled Room Example.

Variable
(See Equation 2.11)

Link
(See room_fc.pr)

Value Units

hAfloor hA 60 W/deg_C

UAwall UA 30 W/deg_C

Tosa Tosa 38 deg_C

minCpm& min_cap 0.0 W/deg_C

maxCpm& max_cap 50 W/deg_C

Tset_high T_set_high 24 deg_C

Tset_low T_set_low 23 deg_C

dt dt 360 s

MCp
floor

 Mcp 1.0 e6 J/deg_C

Tin(0-71964) Tin 13 deg_C

Tin(72000-...) Tin 17 deg_C

Tfloor(0) T_floor 30 deg_C

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 37

Section 3 Advanced Topics

3.1 Numerical Integration Issues
As discussed in Section 2.6 (See page 22), solution of differential equations in SPARK requires using
integrator objects in the problem description. We saw a simple integrator class in Section 2.6.5 (See page
27). Although this is basically a simple idea, there are some details, mostly having to do with start-up at the
problem initial time, that advanced users need to be aware of.

To understand these issues, we need to consider the situation at the very beginning of the simulation period,
i.e., InitialTime, and contrast it with conditions at later time steps. At InitialTime, presumably we want the
prescribed initial values of the dynamic variables to used. That is, if x is a dynamic variable we want to
enforce:

)(0txx = (3.1)

where x(t0) is the prescribed initial value of x. However, at all other times in the solution we need to
calculate the value of x from the integration formula used in the SPARK integrator object. That is,
assuming we are using the Euler formula, we want to enforce:

pp xhxx &+= (3.2)

where the subscript p refers to the previous time step values for x and its derivative. Thus we see that the
system model is slightly different at InitialTime. Ideally, then, we should formulate the problem twice, once
with an object representing Equation 3.1 and again with the integrator relationship, Equation 3.2, starting
the simulation with the first formulation and switching to the second after the InitialTime solution.
However, SPARK 1.0 can not change the model during simulation; it allows for a single problem
formulation. Therefore we have to use the integrator object, Equation 3.2, at InitialTime as well as
throughout the simulation period.

There are two options you can use in SPARK 1.0 to achieve proper start-up. One approach is to observe
that the difficulty arises because there are no proper “previous” values for x at InitialTime. However, we
can turn this to our advantage by simply assigning values of px and px& that will result in the Equation 3.2

object producing the same value for x as Equation 3.1, i.e.,)(0txx = . For example, setting both px and

px& to 0 will work if the initial value of x is supposed to be 0. In Section 3.4 (See page 43) we see how this

can be done in input files. There are disadvantages to this approach. First, determining values for px and

px& that will produce the wanted initial values of x is awkward even for simple problems. The method

SPARK 1.0 User's Manual

38 •••• Section 3 Advanced Topics

becomes intractable when more complex integration formulas are used, especially if more than one previous
value is employed.

Another approach that is often more attractive is to modify the integrator class to use a different inverse
function at Initial Time. For example, we could write
if (::IsInitialTime())
 return args[0].GetInit();
else
 return x_p + h*xDot_p

where IsInitialTime() is a boolean function (see Section 3.15, page 67) that returns True only when time
equals InitialTime, and args[0].GetInit() is a function that returns the initial value of args[0]. This is
actually quite a good solution to the start-up problem. It is easy to implement and will adapt to even
complex integrators. The drawbacks are small losses in computational efficiency and generality. The
principal efficiency loss is due to the extra if-check which must be executed at every time step in the
simulation; it is doubtful that this increase in solution time will be significant in most problems. The loss in
generality is because certain kinds of initial conditions, e.g., ctx =)(0& , can not be enforced. SPARK 2.0
will deal with this start-up situation more rigorously. Two different problem graphs will be constructed, one
using a start-up formula and the other a proper integration formula. This will allow determination of
completely different solution sequences at start up if needed to enforce special initial conditions. Moreover,
this approach will permit use of different integration formulas whenever necessary later in the simulation,
e.g., after a change in integration step size.

3.2 Iterative Solution and Break Variables
As we have noted in earlier examples, systems of equations often have to be solved iteratively. In SPARK,
this can be true even if the equations are all linear, because no specific test is done for linearity. Normally,
the user need not be concerned with the iterative process, so we will not go into detail here. However, a
general awareness of the methods used is helpful if solution difficulties are encountered.
First, in the problem setup phase, SPARK determines if iteration is required by detecting cycles in the
problem graph. If cycles are detected, a graph algorithm is used to find a small set of variables (nodes in
the graph) that “cut” the cycles. The associated problem variables, called “break variables,” are placed in a
vector to act as the unknown vector x in a multi-dimensional Newton-Raphson solution scheme. The
functions that are forced to zero in the Newton-Raphson process are of the form

xxfxg −=)()((3.3)

where x is the vector of break variables, and)(xf represents the directed acyclic graph formed when the
original problem graph is cut at the cut-set vertices. In other words, the current solution estimate, x, is
applied to the graph, producing)(xf , from which the original estimate is subtracted. At the solution,

0)(=− xxf . The Jacobian matrix for the Newton-Raphson process is then
x
gJ

∂
∂= . In each Newton-

Raphson iteration the next estimate is calculated by solving the linear set

)(xgxJ =∆ (3.4)

for x∆ , then calculating

xxx kk ∆−=+1 (3.5)

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 39

The solution of the linear set, Equation 3.4, is carried out with Gaussian elimination, LU decomposition, or
similar method. Note that the size of J is the size of the cut set, so this solution can be much more efficient
than if we had not attempted to minimize the cut set.
Normally, this process converges to the solution quite rapidly (quadratically). However, it is well known
that the Newton-Raphson process, like all methods for solving general sets of nonlinear equations, can fail
to converge under certain circumstances. Failure occurs when the residual functions have particular kinds
of nonlinearities and the starting values are not sufficiently close to the actual solution. Thus starting values
are important.
In SPARK, we refer to the process of selecting a starting value for the iteration process as “prediction”. By
default, the prediction for solution at a particular time step is the final solution value for the same variable at
the previous time step. This can be changed by use of the pred_from_link=linkFrom keyword in the
corresponding link statement. In this case, the value of the linkFrom link is used as the predictor. Note that
at the InitialTime solution there is no proper “previous time step value.” In this case, if there is no
pred_from_link=linkFrom, SPARK will use the default value for the break variable as the initial predictor.
Since default values determined in this way are not appropriate for every variable, they may not be very
close to the solution value. Therefore it is best to provide initial predictors via input files. This issue is
discussed further in Sections 3.3.1 (See page 39) and 3.3.2 (See page 40).

3.3 How SPARK Assigns Values to Variables
In a broad sense, one would think that variable values in a problem should either be specified by the user, or
be calculated in the process of solving the problem. While this is indeed true, there are issues having to do
with SPARK value assignments that sometimes need careful attention. This is best discussed in terms of
four different methods of value assignment that can take place in SPARK: initialization, prediction,
updating, and solution.

3.3.1 Initialization

Initialization refers to providing values that are needed at the beginning of the simulation. Using these
initial values, SPARK then computes values for all link variables at the initial time of the simulation. While
all SPARK variables can be initialized, not all need to be initialized.

What Must be Initialized
There are two cases where variables must be given initial values, regardless of the numerical methods to be
used:

Dynamic variables. These are the link variables that appear in differential equations, i.e., those attached to
an x port of integrators. This initialization requirement arises directly from the underlying mathematical
theory, namely that you need an initial condition, in addition to the differential equation, in order to have a
well posed problem. This requirement is independent of the choice of integration method or other
numerical considerations.

FromLinks of Previous Value Variables. Previous Value Variables (See Section 3.9, page 51) are in a
special category in SPARK. Most SPARK non-input link variables get values in the process of solving the
problem equations at the time in question. Previous Value Variables, on the other hand, get their values
from calculations done at the previous time step. As described in Section 4.13 (See page 77), the syntax
update_from_link = fromLink defines the link from which the variable in question gets its value. For this to
work properly at InitialTime, obviously the variable referred to as fromLink must be initialized at the time
one time step before the problem initial time. This can be done either in an input file, or using the init in the

SPARK 1.0 User's Manual

40 •••• Section 3 Advanced Topics

link statement defining fromLink. Note, however, that Previous Value Variables that arise in the definition
of integrators need not be initialized because they are never used at InitialTime.

What Might Need Initialization
Additionally, certain numerical integration methods may need to be initialized not only at InitialTime, but
also at one or more earlier time steps. While this can be done in SPARK, as a practical matter it is difficult
or impossible to know such values. For this reason, SPARK 2 will avoid use of such methods at the
beginning of the simulation and until necessary histories of past values have been solved for with single step
methods. For Spark 1.0, ideally you should attempt to provide past values as needed by multistep methods,
if used. That said, some analysts may be willing to accept some degree of inaccuracy in early time steps, in
which case this advice can be disregarded.

BDF-like multistep schemes require past values for the dynamic variables, as many as the order of the
method. For example, the bd4.cc class requires values at one, two, three, and four time steps before the
initial time of the simulation. Similarly, Adams-like multistep schemes, e.g., bfd.cc and abm.cc, require
past values for the derivatives of the dynamic variables, again as many as the order of the method.

Finally, it should be noted that variables that SPARK selects as break variables may need initialization. The
reason for this is that unless the link statement for break variable has the keyword pred_from_link =
fromLink (see below) the iteration process at each new time begins at the previous value of the break
variable. Without proper initialization, the previous value at InitialTime would likely become the built-in
SPARK default value, 0.01. To override use of the default value, you must initialize the break variable at
InitialTime.

How to Specify Initialization
The user can specify initial values in two ways. First, init = value can be placed in the link statement for the
variable, or in any equivalent link to a port statement in macro objects (See Section 3.3.5, page 42). An
alternative way to initialize is by means of input files. During the initialization phase of the simulation, all
variables can have initial and past values assigned through reading from input files. This is done by
providing the required variables and derivatives with values at InitialTime, and earlier time steps if needed,
using negative times if necessary.

Initialization of Previous Value Variables is a special situation. Since a variable of this kind gets its value
from the previous value of another variable, the proper way to provide its InitialTime value is to specify the
value of the corresponding fromLink at one time step before InitialTime, indicated by a initial time minus
the time step, using negative time stamp in an input file. Note that an attempt to use the init keyword in a
link statement in which the update_from_link keyword is used results in a warning. Moreover, values given
for Previous Value Variables per se in input files will be ignored.

Thus we see that SPARK initial values can come from the default values, init = value, or input files. Either
of the latter two will override the first. If a variable has both init = value and occurs in an input file, the file
input overrides the init value.

3.3.2 Prediction

In SPARK prediction refers to providing values for break variables at the beginning of each time step, i.e.
prior to solving the simultaneous algebraic problem by iteration.

Where Prediction is Needed
As a rule, only break variables need predicted values.

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 41

How Prediction is Specified
By default, predicted values for break variables come from the final value for the same variable found at the
previous time step. In many cases this will work well, so no special steps have to be taken by the user. If
your problem encounters solution difficulties, you may want to provide better prediction using either the
pred_from_link feature for links, or the pred feature in the class definition.

If pred_from_link = fromLink appears in the link statement for a break variable, the starting value for the
iterative solution at the new time will be the value of fromLink. This mechanism is used when you know
that the value of fromLink provides a more reliable estimate for the break variable than its previous value.
Note that since the fromLink can be any link, this mechanism allows you to devise predictor using variables
from anywhere in your problem. Therefore it is a very general and powerful mechanism.

Another mechanism for prediction is provided by the syntax:

PRED = predictor_fun(port1, port2, port3, ...)

in the Functions section of a SPARK class definition. This methods provides a predictor at the class level,
as opposed to the pred_from_link keyword which provides prediction at the link level. Class level
prediction is primarily used to implement predictor-corrector integration schemes (e.g., abm.cc), where the
predictor scheme is specified following the pred keyword. Another possible usage of class level prediction
is to provide a predictor function for a nonlinear atomic class using a linearized form of the nonlinear
equation. This approach has been successfully applied with the airflow-pressure power law relation in the
zonal model context. Unlike link level predictors, class level predictors can involve only the variables
connected to the ports of the class in question.

If a variable has both link and class level prediction (an unlikely situation), the class level prediction will
override the link level prediction.

3.3.3 Updating

The concept of Previous Value Variables (See Section 3.9, page 51), requires the concept of updating as a
means of assignment of values to such variables.

What Needs to Be Updated
Updating refers only to providing values for Previous Value Variables at the beginning of each time steps.

How Updating is Specified
To implement this concept, every Previous Value Variable has in its defining link statement:

update_from_link = fromLink

Previous Value Variables are viewed as receiving values by updating from the specified links. At the
beginning of every time step, before solving the problem equations, the saved previous value of fromLink is
assigned to the variable named in the link statement.

3.3.4 Solution

Solution is the prevalent method whereby values are assigned to variables in a SPARK problem.

SPARK 1.0 User's Manual

42 •••• Section 3 Advanced Topics

What Needs to Be Solved For
Normally, values for SPARK variables are determined by the solution of the system equations at each time
point in the solution interval. The exceptions to this are, Input variables, Previous Value Variables, and
Dynamic variables at InitialTime

How Solution Is Specified
As noted earlier, keywords in the associated link statements often determine the role of the variable. Inputs
variables are identified by the keyword input either replacing the link keyword, or occurring elsewhere in
the link statement. Previous Value Variables are defined by the keyword update_from_link in the link
statement. Dynamic variables, on the other hand, have no special identifying keyword. Variables become
dynamic merely by being connected to an x port of an integrator. The absence of these special keywords in
a link statement indicates that the associated variable is to be solved for.

Break variables are normal SPARK variables, other than inputs or Previous Value Variables, that happen to
be selected by SPARK for iteration. Although they are assigned predicted values at the beginning of
iteration at each time step, their final values after convergence at each time step are "solution" values, i.e.,
they satisfy the system equations. Note that the break variables are determined automatically by SPARK.

3.3.5 Propagation

As discussed previously, SPARK problem variables can have a default value assigned through the use of
keywords in the port statement. This default value will replace the built-in default value (0.01) for the port.
However, when SPARK atomic classes are used to build macro classes, and when both become parts of
SPARK problem files, a question arises about precedence among these values as set at different levels. For
example, suppose we define atomic class ac1 which has a port called T with a default value of 20. Now
suppose we define a macro class mc1 which uses ac1, and this class also has a port called T with a default
value of 10 which is linked to the T port of ac1. The question is, which default value will SPARK use for
variables linked to the mc1 T port when it is used in a problem or another macro class? The same question
can be posed for the init, min, and max values assigned through the port or link statements.

These questions are answered by propagation rules built into the SPARK parser. The first rule is that the
higher level takes precedence. This means that a default, init, min, and max values given at any level
override those given in lower level ports to which there is a connecting path. That is, values will
automatically propagate downward as needed. Thus if mc1 were to be used in a problem file (or another
macro class), any variable linked to its T port would have a default value of 10.

Let us consider another facet of this problem. Suppose a default value is not given for the T port of the
mc1 discussed above. Will a variable linked to the mc1 T port have a default value (other than the built-in
value of 0.01) when it is used in a problem or another macro class? The rule given above addresses
downward propagation, but this question is one of upward flow of information, from a port in a low level
class to a port linked to it in the higher level class or problem. To deal with this situation, SPARK applies a
second propagation rule, which is that default, init, min, and max values are propagated upward through
connected ports whenever the higher level ports have no corresponding values.

Together, these propagation rules produce behavior that most users will find natural. However, ambiguity
can arise when a macro class port is linked to two or more ports of constituent classes. For example,
suppose mc1 also uses another atomic class, ac2, which also has a port called T, but with a default value of
15. Will the value propagated upward (in the absence of default specification of the T port in mc1) be 20
or 15? There is no way for SPARK to resolve such an ambiguity. Consequently, the propagated value will
be determined by the order in which the parser encounters the linkages in mc1. To avoid such ambiguity,
the user should assign values at the higher levels when building complex macro classes.

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 43

3.4 Input Values from Files
Most SPARK problems require data beyond that which is specified in the problem specification file. In
particular, as we saw in the examples of Section 2, variables designated as input in the problem
specification file need run time values. Moreover, certain other kinds of data are needed to specify exactly
how the problem is to be solved numerically, e.g., initial values for dynamic variables and prediction values
for iteration variables. All such data can be provided in SPARK input files. Although usually bearing the
.inp extension, files of any extension can be used as SPARK input files..

Although in simple examples we have dealt with in this manual so far we have used a single input file for a
SPARK problem, in practice it is often better to segregate the different kinds of input into separate files.
One useful categorization of different types of input is:

Constant data: These are usually physical characteristics of the system that do not change with time.
For example, surface areas, equipment capacities, and any other physical problem data that are
assumed to be constant, such as heat transfer coefficients.

Time varying data: This includes any problem input data that varies with time during the simulation
interval. The most common example in HVAC problems is weather data, such as ambient
temperature and humidity. However, system control information, such as thermostatic set points,
that are scheduled to change at particular times are also time varying inputs.

Initial Conditions: If the problem includes differential equations, the initial values of all dynamic
variables must be provided. Although these can be specified in the problem specification file with
the init keyword, it is usually better practice to specify them in an input file so they can be changed
in subsequent runs without rebuilding the problem.

Numerical support data: Numerical techniques used in SPARK sometimes need, or at least benefit
from, additional user supplied data. This category often includes initial predicted values for
variables that are solved for by iteration, i.e., break variables. Also, if the chosen numerical
integration methods for differential equations in the problem require previous values of the
dynamic variables and/or their derivatives, they belong in this category.

In a well organized problem, each of these categories should have a separate input file. Moreover, it is
sometimes wise to have multiple files within these categories. For example, you could have a separate
constant data file for each subsystem in a complex model. Another situation calling for multiple input files
within a category is when time varying data has different temporal characteristics. For example, if we
wanted to have outside temperature Tosa varying hourly in the room_fc example it would be far easier to
place this in a different file than the one with Tin which changes only once.

We can demonstrate these ideas by revisiting the room_fc example from Section 2.7 (See page 28). For
example, we could create four separate input files using the above categories. The constant data file,
appropriately called room_fcDesignParameters.inp, would contain:

8 hA UA Tosa Mcp T_set_low T_set_high max_cap min_cap

0 60 30 38 1.e6 23 24 50 0

while the time varying data file, that we might call room_fcTimeVaryingParameters.inp, would contain:
1 Tin

0 13

71964 13

72000 17

*

Since the controlled room problem includes a differential equation, it is necessary to specify the initial value
of the dynamic variable, T_floor. Rather than relying upon the init keyword to set the initial value for this

SPARK 1.0 User's Manual

44 •••• Section 3 Advanced Topics

dynamic variable we can specify it in an initial conditions input file. This file could be called
room_fcInitialConditions.inp and would contain:

1 T_floor

0 30

One advantage of this approach is that it is not necessary to rebuild the problem when initial values change.

Finally, we should create an input file for whatever information is needed to support the numerical solution
process, provided such information is available. One issue in this regard is initial predictions for break
variables, as explained in Section 3.3.2 (See page 40). As explained there, at the very beginning of the
solution an initial predictor is needed because otherwise there would be no "previous time value" to use. If
a reasonable estimate for a break variable is not readily available, SPARK can sometimes find a solution
beginning with the default initial value, 0.01. However, if you can estimate more appropriate initial
predictions the iteration process will have a better chance of quickly finding the correct solution at the start
of the problem. Note that while better accuracy of these initial predictors will improve the chances for
solution, usually great accuracy is not necessary.

In the case of the controlled room example the equation file reveals that SPARK chooses Ta and T_floor as
break variables. There is no need to worry about T_floor in this regard, because the initial value already
provided will be used directly. For the Ta variable, we can easily provide an estimate more accurate than
the default value. For example, a value half way between the initial T_floor value and the supply air
temperature value should be a reasonable for Ta. Thus a numerical support input file called
room_fcNumericalSupport.inp could therefore be created as:

1 Ta

0 21.5

A problem run control file (See Section 3.14, page 65) must list the names and locations of all input files.
For this example, we have room_fc.run as:
(
InitialTime (0.0 ())
FinalTime (108000.0 ())
TimeIncrement (180 ())
FirstReport (0.0 ())
ReportCycle (360.0 ())
InputFiles (room_fcDesignParameters.inp ()
 room_fcTimeVaryingParameters.inp ()
 room_fcInitialConditions.inp ()
 room_fcNumericalSupport.inp ()
)
OutputFile (room_fc.out ())
)

3.5 Macro Links
When systems with fluid flow are modeled, the component models are often connected with a common set
of links. For example, HVAC system air components such as fans, heating and cooling coils, and mixing
boxes are connected by links representing air enthalpy (or temperature), humidity, and mass flow rate.

In SPARK, a set of ordinary links such as these can be grouped together and used as a macro link,
connecting macro ports of classes, thereby simplifying specification of such models.16

16 Technically, a macro link does not exist in its own right as a SPARK construct. It is just a term for
referring to a link connected to a macro port.

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 45

As an example of macro links and ports, consider a moist air mixer in which we define the interface to have
three macro ports, representing two inlet flow streams and one outlet flow stream:
port AirEnt1 "Inlet air stream 1" [airflow]
 , .m "air mass flow" [kg_dryAir/s]
 , .w "hum. ratio" [kg_water/kg_dryAir]
 , .h "enthalpy" NOERR [J/kg_dryAir]
 ;
port AirEnt2 "Inlet air stream 2" [airflow]
 , .m "air mass flow" [kg_dryAir/s]
 , .w "hum. ratio" [kg_water/kg_dryAir]
 , .h "enthalpy" NOERR [J/kg_dryAir]
 ;
port AirLvg "Leaving air stream" [airflow]
 , .m "air mass flow" [kg_dryAir/s]
 , .w "hum. ratio" [kg_water/kg_dryAir]
 , .h "enthalpy" NOERR [J/kg_dryAir]
 ;

In this example, each macro port has three properties or subports, namely mass flow rate, humidity ratio,
and enthalpy. Although the individual subports of one of these ports have separate names, description
strings, and physical units, the macro port itself also has a name, description, and units string.17

When an object of this class is instantiated you can connect similar macro ports (i.e., those with like units
and similar internal structure) in the same manner as you would connect ordinary ports. Thus if the class
with the above interface were called mixerMP we could write (in some macro class or problem we were
creating):
declare mixerMP m1, m2;
link AirStream1 m1.AirLvg, m2.AirEnt1;

This would connect the humidity ratio, mass flow rate, and enthalpy of the air stream leaving m1 with the
first inlet of m2.

Developing classes that use macro ports requires great care, since if it is not done correctly the objects will
not connect properly. The principal requirement is that if the macro ports of two objects are to connect
properly, the ports must be similarly defined in both objects. By “similarly defined,” we mean that the unit
strings for both macro ports must be identical, and that there must be at least one common port name
between the two ports. This is no problem in the above example, since m1 and m2 are of the same class,
and the leaving air port is defined exactly the same as the two entering ports.

However, errors can easily occur if the two ports being connected belong to objects of differing class,
perhaps developed by different people. For example, suppose a fan class were to be defined with the
entering air port defined as:
port AirEnt "Inlet air stream" [airflow]
 , .massFlow "air mass flow" [kg_dryAir/s]
 , .w "hum. ratio" [kg_water/kg_dryAir]
 , .h "enthalpy" NOERR [J/kg_dryAir]
 ;

Since the units string , airflow, is the same, SPARK would allow the following connection to be attempted:
declare mixerMP m1;
declare mfan f1;
link InFlow m1.AirLvg, f1.AirEnt;

17 Although, rather than physical units, the macro port “units” are merely a unique name, selected by the
user.

SPARK 1.0 User's Manual

46 •••• Section 3 Advanced Topics

However, since the flow subport is called m in the mixerMP and massFlow in the mfan, only the w and h
subports would be successfully connected. This is because when the SPARK parser expands the macro
link/port, it attempts to match subports of like names. If there are no subports in the second object that
match any of the subports of the first, the parser rejects the link statement as erroneous. But if at least one
of the subports at one end matches a subport at the other end, SPARK assumes you know what you are
doing and accepts the link. This is useful since you may indeed want to connect some but not all subports;
for example, you may wish to connect one component with a dry-air macro port (i.e., no humidity ratio)
with another component that was designed for moist air calculations.18

There are also situations where you need to qualify individual subport in a macro link with one or more
keywords. For example, suppose the first inlet port of m1 in our first example comes from problem input
data, and the mass flow rate is to be reported. The syntax to accomplish this is shown below:
declare mixerMP m1, m2;
link AirStream1 m1.AirLvg, m2.AirEnt1;
input massFlow1 m1.AirEnt1.m report;
input hFlow1 m1.AirEnt1.h;
input wFlow1 m1.AirEnt1.w;

As is seen in this example, this syntax is much the same as for ordinary links or inputs; the only difference is
that we qualify the port name, e.g., m, with the subport name as a prefix. The dot (.) is used as a separator.

While the above syntax is valid and easy to interpret, it is not concise. A more concise syntax that
expresses the same connections is:
declare mixerMP m1, m2;
link AirStream1 m1.AirEnt1 (.h) input (.w) input (.m) {input report};
link AirStream2 m1.AirLvg, m2.AirEnt1;

The first link statement defines a macro link called AirSteam1 that is connected to the AirEnt1 macro port
of the m1 object. We see that each subport is referenced with the notation (.portName), and that following
such reference there is a keyword such as input that applies only to that subport. If more than one keyword
is needed, they are enclosed in braces, e.g., {input report}. Thus we see that all three subports are to come
from input, and the m subport is to be reported.

The need to make direct subport connections also arises in defining classes that have subports. For
example, the mixerMP class might be (partially) implemented using the concise syntax as:

declare enthalpy e1, e2, e3;
declare sum s;
declare balance hb, wb;
link AirEnt1 .airEnt1,
 (.TDb) e1.TDb
 (.w){e1.w, wb.q1}
 (.h){e1.h, hb.q1}
 (.m){s.a, hb.m1, wb.m1};
link AirEnt2 .airEnt2,
 (.TDb) e2.TDb
 (.w){e2.w, wb.q2}
 (.h){e2.h, hb.q2}
 (.m){s.b, hb.m2, wb.m2};

18 This is somewhat like plugging a 2-wire appliance cord into a 3-wire wall outlet.

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 47

link AirLvg .airLvg,
 (.TDb) e3.TDb
 (.w){e3.w, wb.q}
 (.h){e3.h, hb.q}
 (.m){s.c, hb.m, wb.m};

Here we see that each subport of the three macro ports is linked to the appropriate ports of the constituent
enthalpy and balance objects. The normal syntax could also be used here, but this would require four times
as many statements.19

3.6 Internal SPARK Names for Variables (Full
Names of Links or Ports)
In our early examples the name of a problem variable was synonymous with the user-defined name assigned
in a link or input statement. For example, in:
declare room r;
link Ta r.Ta;

Ta is the link name and it obviously represents the variable placed at the Ta port of the r object, probably a
room air temperature. However, due to the hierarchical nature of SPARK programming, there are places
where internal names used by SPARK might not be quite so obvious. This matter can be important when
you are reading certain SPARK files, such as the .eqs file for complex problems, and when using the probe
keyword (See Section 3.7, page 49).

To understand SPARK naming conventions you must understand that at solution time the solver works
entirely at the equation level. This means that when SPARK parses a problem file, all macro objects and
macro links must be expanded into atomic objects and links. When this happens, link names in higher level
objects are propagated downward, as might be expected, overriding names that may have been assigned in
the class definition of lower level object. For example, suppose that the room class used in the above link
statement is (partially) defined as:

declare cond flow; /* Air mass flow "conductor" */
declare cond walls;/* Walls conductance */
declare cond floor;/* Floor to air conductor */
declare diff net; /* Diff between Q in and out */
declare propcont pc; /* Proportional controller */
link Tair .Ta, flow.T2, walls.T1, floor.T1, pc.signal [deg_C];

From this we can see that the problem level link named Ta is known as Tair inside the room class, and is
connected to the Ta port of that class, and to ports of various names of the constituent classes of room. By
the noted propagation rule, all of these lower level names are overridden by the problem level name Ta.

As a result of this downward propagation of link names, all problem level variables are readily identifiable
when reported, for example, in the .eqs file.

However, often there are links in lower level objects that do not appear at the problem level. This occurs
whenever a macro class developer elects not to connect an internal link to a port, or if the user of the class
elects not to connect some unessential port (i.e., one with the NOERR keyword. See Section 4.9, page 74).
As an example, the mixer class in the HVAC Toolkit class library is defined as:

19 The mixerMP class is one of the many classes in the HVAC Tool Kit implemented in the macro port
form.

SPARK 1.0 User's Manual

48 •••• Section 3 Advanced Topics

port m "Combined flow rate, e.g., total mass flow" ;
port q "Combined transported quantity, e.g., enthalpy" ;
port m1 "First inlet flow rate" ;
port q1 "First inlet transported quantity" ;
port m2 "Second inlet flow rate" ;
port q2 "Second inlet transported quantity" ;
declare safprod sp1, sp2, sp;
declare sum s;
link .m, sp.a ;
link .q, sp.b ;
link c sp.c, s.c ;
link .m1, sp1.a ;
link .q1, sp1.b ;
link a sp1.c, s.a ;
link .m2, sp2.a ;
link .q2, sp2.b ;
link b sp2.c, s.b ;

Note that the links named a, b, and c are not connected to ports. Consequently, they cannot be accessed
from higher level objects, and therefore cannot be problem level variables.20 Nonetheless, these links
represent variables whose values must be calculated by the SPARK solver at run time, and they will be
assigned names by the SPARK parser. Under normal circumstances, you would not need to know these
names; after all, they are merely intermediate variables needed to solve the mixing equations. However, if
your problem does not solve properly you may have need to look in the .eqs file (Section 2.2.3, page 8), in
which case you may want to know the names SPARK assigns to such links. Also, if you need to use the
probe keyword, you will need to know how to refer to lower level links and ports (See Section 3.7, page
49).

Link names that do not resolve to problem-level links are generated by concatenation of object, link, and
port names beginning at the highest level at which the link appears and going down to the port of an atomic
class. The special prefix symbols single quote (’), tilde (~), and dot (.) are used in the concatenation in
order to ensure unambiguous names. As an example, if we declare a room in a problem file as:
declare room r;

and the room declares a mixer:
declare mixer mix1;

then the c link in the mixer would be referred to as:
r’mix1~c

This might be read “the c link in the mix1 object in the r object.” The single quote (’) prefixes an object in
a hierarchy of objects, while the tilde (~) prefixes links. In a more complex situation, objects may be
nested deeper, for example,
obj1’obj2’obj3~linkname

Also, as mentioned in Section 2.5.2 (See page 19), links within a macro class are often unnamed. In this
case, SPARK will use a generated string of the form “NONAMEn” where n is an integer. Thus you might
see:
obj1’obj2’obj3~NONAME7

in SPARK .eqs files.

An additional complication is introduced when macro links are used (Section 3.5, page 44). Since macro
links may have several subports, the linkname must be qualified with the name of the particular port of
interest. For example,

20 Unless the probe statement is used (Section 3.7, page 49).

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 49

obj1’obj2’obj3~linkname.p1

refers to the p1 port of link linkname in obj3 that is part of obj2 that is part of obj1. And if the p1 port
itself was in fact a macro port, we could go on with:
obj1’obj2’obj3~linkname.p1.a

to refer to the a subport of the p1 port of the link linkname in obj3 which is part of obj2 which is part of
obj1. Fortunately, since you are primarily concerned with higher level problem variables, you don’t often
have to cope with this complexity.

3.7 Using the Probe Statement
As noted in the preceding section, there are often SPARK links that are not visible at the next higher level
due to not having been elevated to a port of the class in which they are defined. Yet, sometimes it is
convenient or necessary to be able to gain access to such links from higher levels. For example, you may
want to report the c link internal to the mixer object in Section 3.6 (See page 47). While you could solve
this problem by editing the mixer class, i.e., adding a new port for c, this is not a good solution. First,
making changes to widely used classes is hazardous; errors might be introduced, or you might cause
unwanted behavior in other applications that use it. Another reason to avoid this approach is that if the
needed access is several levels up in a hierarchy, you will have to edit every class in the hierarchy to elevate
the needed link to where it is needed. The probe statement is provided to give an easier and better solution
to such problems. It allows you to reach down into lower level objects, either to report values or set default,
init, min, or max values. You can also set match_level and break_level for the link.

The probe statement has the same general format as the link statement. However, you must use the full,
SPARK generated, name for the low level link, as explained in Section 3.6 (See page 47). As an example,
we will use probe to set the init value and request reporting for the c port of the mixer in the room
mentioned in Section 3.6 (See page 47):
probe mixer_c r’mix1~c init=0.5 report;

This statement would be put in the problem file in which the room r is declared. Here mixer_c is a user-
defined name for the probe. The expanded name of the wanted lower level link is r’mix1~c. With the init
keyword we set the initial value, to be used if this link was selected as a break variable for iterative solution,
to 0.5. Finally, the report keyword causes the value of c in the mixer to be reported along with other
requested report variables during solution. The probe name mixer_c will be used as the label in the
requested reporting.

As an aside, it is interesting to note that the above statement could also be written as:
probe mixer_c r’mix1’sp.c init=0.5 report;

or as:
probe mixer_c r’mix1’s.c init=0.5 report;

In these alternative forms, we set the probe to point at the c ports of either the sp or s objects to which the c
link is connected. Since the values on the ports will be the same as the value on the link at run time, the
same values will be reported.

3.8 Symbolic Processing
As seen in earlier examples, SPARK atomic classes are constructed from equations. While these classes
can be constructed manually, the process can be time consuming and tedious. First, the equation must be

SPARK 1.0 User's Manual

50 •••• Section 3 Advanced Topics

solved for all (or most) of its variables, one at a time. For example, if the equation is the ideal gas
relationship pv nRT= , we need to do the algebra to get the following formulas:

p nRT v
v nRT p
n pv RT
R pv nT
T pv nR

=
=
=
=
=

/
/

/
/
/

These are called inverses of the original equation. Then, for each inverse we must construct a C++
function that evaluates the right hand side and returns the resulting value. Finally, all of these functions
must be incorporated in a SPARK atomic class representing the ideal gas law, following the syntax shown
in the earlier examples (Section 2.4.1, page 14).

Fortunately, these tasks can be automated using symbolic processing (also called computer algebra) tools.
SPARK provides a program called sparksym that fills this need. With it you can generate all symbolic
inverses of an algebraic equation, generate C++ functions implementing these inverses, or create the
complete SPARK atomic class.
Actually, sparksym is an interface to third-party symbolic programs. Currently, it can use either
Mathomatic, Maple, Mathematica or MACSYMA, as selected by a command line option. A subset of the
Mathomatic program is integrated in sparksym, so that option is always available.21 If Maple, Mathematica
or MACSYMA are detected on your machine when SPARK is installed, or if you install them later and take
steps to link them to SPARK, you can select it as an alternative symbolic engine for sparksym. Maple,
Mathematica and MACSYMA are more powerful than Mathomatic, allowing more complex equations to be
handled.

3.8.1 Simple Symbolic Processing

Command-line usage of sparksym is with the command:
sparksym –engine -option [name] "equation" [target] [outFile]

where:
engine = O (Mathomatic), P (Maple), E (Mathematica), S (MACSYMA)
option = i (single inverse), a (all inverses), f (function), c (class)
name = Name for function of class (used only with option f or c)
equation = An equation of the form <expression>=<expression>(enclose in double quotes if spaces
occur)
target = The variable to be solved for (used only for options i and f)
outFile = Optional file for the result

21 The sparksym executable provided with SPARK does not give you the full capability of Mathomatic.
You can download the DOS shareware program from http://www.lightlink.com/george2/. Among other
features, it is capable of symbolic elimination of variables and equations in sets of equations; sometimes this
feature can be used to help develop efficient SPARK classes.

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 51

3.8.2 Generating an Inverse

For example, to generate the inverse equation for T using the ideal gas law, with output to the screen:

sparksym –O -i "p*v = n*R*T" T <enter>
Inverse:
 T = p*v/n/R

Or to create the SPARK idealGasLaw atomic class, with results written to idealGasLaw.cc:

sparksym –O -c idealGasLaw "p*v=n*R*T" idealGasLaw.cc <enter>

The class generated is directly usable, but perhaps not as complete as you may wish. For example, the ports
are all assigned a description which is the same as the port name, units are [-] (i.e., unspecified), and the
init, min, and max values are set at 1, -100000, and 100000 respectively. You can edit the output file to
give more appropriate values for these items if you wish.

3.8.3 Caveats

You are advised to carefully check all symbolic results, since computer algebra software often gives
unexpected results, sometimes simply wrong. Sparksym using the Mathomatic option is not as robust as a
full-featured symbolic package, although it may meet many of your needs. With it, you are limited to
expressions using the operators +, -, *, /, and ^ (exponentiation). It will fail quickly if it cannot easily
invert the equation for the desired variable. Note that the atomic class generated with the -c option will
have functions for each variable in the equation, whether or not an explicit inverse was found for it.
Variables for which it could not find an explicit inverse use an implicit inverse as in Section 3.11.2 (See
page 60). You may wish to edit the implicit functions, as discussed in the same Section, to improve
numerical stability. With the Maple option, practically any equation can be handled, including various
mathematical functions. Additionally, it will sometimes find multiple inverses. In this case all inverses are
written in the generated functions, with all but one commented out. Therefore it is a good idea to examine
the generated class to see that the wanted inverse is being used.

All of the above functionality is also available in the WinSPARK and VisualSPARK interfaces. See the
appropriate Installation and Usage Guide for particulars.

3.9 Previous Value Variables, or Updating
Variables from Links
As discussed in Section 3.3.4 (See page 41), most SPARK variables are determined by solution of the
problem equations at the current simulation time. This means that each variable gets assigned a value that is
calculated from an inverse of one of the problem equations. There are situations, however, when a variable
in a simulation must represent the previous value of some other variable. Such a variable needs no equation
since its value is determined merely by assignment of the value of some variable at the previous point in
time. A variable of this nature can be called a previous value variable.

Since SPARK variables are carried on links, previous value variables are viewed as receiving values by
updating from specified links. Consequently, SPARK provides update_from_link as an optional keyword
in a link statement, taking the form:

link linkName <connections> update_from_link = FromLinkName;

At the beginning of the time step, before solving the problem equations, the saved previous value of
FromLinkName is assigned to linkName. As discussed in Section 3.3.1 (See page 39) initializing a

SPARK 1.0 User's Manual

52 •••• Section 3 Advanced Topics

previous value variable must come from the init= keyword in the FromLinkName, not in the previous
value variable link itself. Indeed, it is an error to place the init keyword in a link statement that contains the
update_from_link keyword. Alternatively, the initial value can come from an .inp files as discussed in
Section 3.3.1.

As an example we shall revisit the Euler integration formula discussed in Section 2.6 (See page 22). For
simplicity there we implemented the Euler integration formula as a SPARK atomic class with a single port
representing the variable of integration, and the name of this port was used both as the returned result and in
the argument list, i.e.,

x = euler(x, xdot, dt);

However, this results in unnecessary iteration since the SPARK parser will not know that, internal to the
function, only the past value of x is used. We can use the update_from_link keyword to correct this
deficiency as follows. First, we modify the atomic class to have both current and previous x as ports, and
properly designate &x as referring to the previous time value:

/* euler_formula.cc */
#ifdef spark_parser
port x;
port x_p;
port xdot_p;
port dt;
functions {
 x = euler_formula(x_p, xdot_p, dt);
 }
equations {
 x = x_p + dt*xdot_p;
 }
#endif /*spark_parser*/
#include "spark.h"
double euler_formula(ArgList args) {
 const double& x_p = args[0][1]; // previous x
 const double& xdot_p = args[1][1]; // previous xdot
 const double& dt = args[2]; // time step
 if(::IsInitialTime())
 return args[0].GetInit();
 else
 return x_p + dt*xdot_p;
}

Note that we have named this atomic class euler_formula. This allows us to define a macro class called
euler which conceals the complexity of the update_from_link considerations and preserves the convenient
interface used in the Section 2.6 example. Here is the euler macro class:

/* euler.cm */
port x;
port xdot;
port dt;

declare euler_formula e
link .dt e.dt;
link .x e.x;
link X .x
link XDOT .xdot
link x_p e.x_p update_from_link = X;
link xdot_p e.xdot_p update_from_link = XDOT;

With this implementation, the ports refer only to current time values of x and &x . Internal to the macro class
we create links for both current and previous values of x and &x . The previous value variables, however,

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 53

are specified to have their values updated from the corresponding current time values. Note that a link
name, not a port name, must follow the update_from_link keyword. Due to this requirement we define two
links X and XDOT, connect them the ports x and xdot, and use them as arguments to the update_from_link
keywords. Finally, note that it is not necessary to initialize the previous value variables in this example
because, as a consequence of the if-statement in the function definition, they are not used at InitialTime.

There are uses for previous value variables other than in integrators for solution of differential equations.
For example, simulation of discrete time controllers requires past values, both to calculate controller
“integral action” and to determine when to update the controller output. An additional usage is for
introduction of an artificial time delay in a troublesome iterative loop. By simply making some variable in
the loop a previous value variable the need for iterative solution is removed. If the time step is short, the
error introduced may be acceptable.

3.10 Solution Method Control
While the fundamental, graph-theoretic methodology in SPARK is always the same, there are some options
you can set to control the actual numerical methods employed. The graphical user interfaces (Windows
95/98/NT or UNIX) provide menus for setting these options. If you are working at the command line, you
can set these options by editing the probName.prf file. However, to explain these options we must first
review the fundamental SPARK methodology.

3.10.1 SPARK Problem Components

As noted previously, SPARK generates a C++ program to solve the problem expressed in your
probName.pr file. To generate this program, graph-theoretic methods are used to decompose the problem
into a series of smaller problems, called “components,” that can be solved independently. A component
might be a sequence of atomic-object inverse functions that need to be executed in order; this is the case if
no iteration is required in that particular component. On the other hand, iteration may be required, in which
case the component, in graph theoretic terms, is a “strongly connected component.” While all equations in
a strongly connected component are involved in the iterative solution, usually not all variables need be
iterates. Therefore SPARK uses graph algorithms to determine a small set of so called “break variables”
that break all cycles in the component; these variables constitute a “cut set.”

By default, SPARK will attempt to solve each strongly connected component using the Newton-Raphson
method, treating the cut set as the vector of independent variables (See Section 3.2, page 38). If your
problem solves correctly with the default method, it is probably best not to change it. However, if it fails to
solve, it will probably be due to either non-convergence of the Newton-Raphson iteration, or numerical
exceptions (i.e., values of problem variables that exceed the capabilities of the computer). In either case, it
is usually possible to determine which component is having difficulty by looking at the probName.log file
or the run.log file. You may then want to change the solution method for that component from among the
options discussed below.

Solving method options fall into two categories: Component Solving Methods, and Matrix Solving
Methods. Component Solving Methods refer either to modifications of the Newton-Raphson method, or a
completely different method of finding values for the break variables that satisfy the component equations.
Matrix Solving Methods refers to the way in which the next estimates of the break variables are determined
from the current values using the Jacobian matrix.

Full explanation of the advanced methods is beyond the scope of this manual. The cited references were
consulted in the SPARK implementation.

SPARK 1.0 User's Manual

54 •••• Section 3 Advanced Topics

3.10.2 Default Settings

As noted in Section 2.2.1 (See page 6) every SPARK problem has a probName.prf, created by the SPARK
setup program. When the problem is executed the solving method settings and associated parameters are
taken from this preference file. If you use one of the graphical user interfaces, such as WinSPARK or
VisualSPARK, you can use provided menus for setting the solving methods and parameters, and the settings
you specify will be transferred to the problem preference file. If for any reason the preference file does not
define a particular method or parameter, default settings built into the source code are used. These default
settings are given in the tables below. These are “safe” but not necessarily recommended settings, so you
should normally provide appropriate settings for your problem.

3.10.3 Component Solving Methods
The available methods for solving the component are listed in Table 3.1. The code numbers are needed
only if you want to set the option by editing the probName.prf file. To set the component solving method in
the preference file, the ComponentSolvingMethod key must be set to the desired code number under the
ComponentSettings key for the component in question. When using a graphical user interface the available
choices are on a selection menu. Note that the solving method chosen will depend on the component. For
example, non-iterative components do not need any solution method. Also, when there is iteration, not all
methods are applicable for components with more than one break variable. For example, Brent’s method
applies only when there is a single break variable. You can examine the probName.eqs file to see how
many break variables there are for each component.

Table 3.1 Component Solving Methods (Not all implemented in initial release)

Method Code Notes Reference

Newton-Raphson 0 With or without
relaxation (default).

(Conte and de Boor 1985)

Multi-start ABS 1 (Sen 1994)

Fixed point iteration 2 Successive substitution

Steffensen acceleration 3 (Press, Flannery et al. 1988)

Secant 4 Multidimensional
secant (using
Broyden’s update
formula).

(Press, Flannery et al. 1988)
(Dennis and Schnabel 1996)

Homotopy 5 First degree only.

Brent 6 Valid only for single
break variable
components.

(Press, Flannery et al. 1988)

All in Turn 7 Try each of the above
methods in listed order.

In addition to the basic solution method for a component, there may be parameters that control how the
method behaves. Available control parameters as shown in Table 3.2. For example, with Newton-Raphson
method you may want to use “Relaxation,” whereby the calculated corrections to the break variables are
only partially applied. This is achieved by using a fractional relaxation coefficient. Additionally, in some
cases it may be beneficial to “scale” the Jacobian matrix. SPARK allows four different scaling methods.

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 55

The default values in the table are used only if the parameter in question is not defined in the probName.prf
file. However, since a preference file is created automatically for your problem, these defaults are seldom
used.

Table 3.2 Component Solution Parameters

Parameter

[key in preference file]

Allowed values Notes

Maximum Iterations

[MaxIterations]

An integer >0 Maximum allowed iterations when iterative
solution is used.

Default = 50

Tolerance

[Tolerance]

A floating point
number>0.0

Solution relative tolerance. In iterative
solution, iteration will continue until no
break variable y changes by more than
Tolerance*|y| between two successive
iterations.

Default = 1.E-6

Maximum Tolerance

[MaxTolerance]

A floating point
number > Tolerance

Maximum Tolerance used for a “relaxed”
tolerance check instead of Tolerance in case
of no convergence after maximum iterations
(see Tolerance definition above).

Default = 1.E-3

Absolute Tolerance

[AbsTolerance]

A floating point
number > 0.0

Value at which the variable with the smallest
order of magnitude is essentially
insignificant.

Default = 1.E-6

Jacobian Evaluation Step

[TrueJacobianEvalStep]

Integer >= 1 The Jacobian will be re-evaluated only after
this number of iterations.

Default = 1

Epsilon

[Epsilon]

A floating point
number >= 0.0

Change in independent variable used in
evaluation of partial derivatives for Jacobian
calculation.

Default = 0 (see Section 3.10.6).

SPARK 1.0 User's Manual

56 •••• Section 3 Advanced Topics

Step Control Method

[StepControlMethod]

Integer >= 0 Controls the length of the step computed by
the component solving method to achieve
“global” convergence.

0 = Fixed relaxation (see Relaxation
Coefficient);
1 = Basic iterative backtracking
attempting to decrease Euclidean norm of
residuals;
2 = Backtracking with line search.22

Default = 0.

Relaxation Coefficient

[RelaxationCoefficient]

0 < Floating point
number <= 1.0

This is a multiplier applied to the Jacobian
calculated change to get the actual change
during Newton-Raphson iteration.

• Fixed relaxation coefficient used with the
step control method 0.

• With the other step control strategies, this
is the relaxation coefficient used to
recover when the backtracking method
fails to decrease the cost function.

Default = 1.0

Scaling Method

[ScalingMethod]

Integer >= 0 Scales the Jacobian before using.
0 = No scaling;
1 = Curtis-Reid optimum scaling of
Jacobian;
2 = Scaling of Jacobian based on
right-hand side residual vector;
3 = Scaling of Jacobian based on
columns.

Default = 0.

3.10.4 Matrix Solving Methods
In Newton-Raphson and related component solving methods a linear set of equations must be solved at each
iteration, yielding a correction to the current estimate of the cut set variables. By default, SPARK will use
Gaussian elimination to effect this solution. However, other options are available as shown in Table 3.3.
The code numbers are needed only if you want to set the option by editing the probName.prf file. To set
the matrix solving method in the preference file, the MatrixSolvingMethod key must be set to the desired
code number under the ComponentSettings key for the component in question.

22 (Dennis and Schnabel 1996) should be consulted for more details on the backtracking with line search
step control algorithm.

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 57

Table 3.3 Matrix Solving Methods

Method Code Notes Reference

Gaussian Elimination 0 Default (Conte and de Boor 1985)

Singular Value
Decomposition
(SVD)

1 Poorly conditioned matrix. (Press, Flannery et al. 1988)

Lower-Upper
Factorization (LU)

2 (Conte and de Boor 1985)

In addition to the matrix solving methods shown in Table 3.3, there are also parameters that control their
behavior. These are shown in Table 3.4. Note that not all parameters apply to every method.

Table 3.4 Matrix Solving Method Parameters

Parameter

[key in preference file]

Values Notes

Pivoting Method

[PivotingMethod]

0, 1, 2 Only used with the Gaussian
Elimination matrix solving method.

0 = No pivoting;
1 = Partial pivoting, row pivots;
2 = Total pivoting, rows and
columns.23

Default=1

Refinement Method

[RefinementMethod]

0 < Integer < 5 Only used with the LU solving matrix
solving method.

3.10.5 Stopping Criterion for Iterative Solution

SPARK employs a mixed absolute/relative tolerance as the stopping criterion used to decide when to
terminate the iterative solution in a component. That is, for a break variable y, the convergence criterion is
that the iteration error satisfies:

()yToleranceceAbsToleranyError ⋅≤ ,max)((3.6)

The value of Tolerance is specified with the key “Tolerance” in the problem preference file on a
per-component basis. The value of AbsTolerance is specified with the key “AbsTolerance” for the
component in question. By default, it should be set to Tolerance unless the variables have very different
orders of magnitude.

23 The Gaussian elimination solving method with full pivoting is also referred to as the Gauss-Jordan
elimination solving method in (Press, Flannery et al. 1988).

SPARK 1.0 User's Manual

58 •••• Section 3 Advanced Topics

Such a scaled tolerance requirement is necessary to achieve convergence with a consistent number of
significant digits, p, for variables with different orders of magnitude. The relationship between the
tolerance and the number of significant digits in the solution is:

)1(10 +−= pTolerance (3.7)

Clearly, it is important to carefully select the error tolerance setting for each component so as to accurately
reflect the scale of the problem. For components whose break variables are scaled very differently from
each other, the AbsTolerance value should be set to the value at which the break variable with the smallest
order of magnitude is essentially insignificant. This should ensure that the variable with the smallest scale
does not limit the accuracy with which the other variables are computed. When all the break variables are
of comparable order of magnitude and their values are not near the AbsTolerance value, then the Tolerance
value gives an indication on the number of significant digits in the solution, using Equation (3.7). In this
case, Equation (3.6) tends to enforce a pure relative tolerance requirement. However, if the values of the
break variables are near the AbsTolerance value, then you should not expect the relation in Equation (3.7)
to hold precisely. In this case, Equation (3.6) tends to enforce a pure absolute tolerance requirement.

3.10.6 Scaled Perturbation for Partial Derivatives

In SPARK, Newton based iterative solution methods (i.e., Newton-Raphson and Homotopy) require the
Jacobian matrix to be computed. This matrix consists of the partial derivatives of the iterated system of
equations with respect to the break variables. These partial derivatives are approximated by finite
differences. For example, the partial derivative of the equation f(t, x, y) with respect to the break variable y
is approximated using the following formula:

y
yxtfyyxtf

y
yxtf

∆
−∆+≈

∂
∂),,(),,(),,(

 (3.8)

Here y∆ is called the perturbation value, or increment, of the variable y. You can specify the value of the
perturbation value for each component using the keyword Epsilon in the problem preference file (See
Section 3.10.3, page 54).

The differencing procedure in digital computation is sensitive to roundoff error. The main source of
difficulty in computing the Jacobian matrix by finite differencing is the choice of the perturbation y∆ .
Consequently, SPARK provides the option to use a scaled perturbation value to compute the partial
derivatives. This is done by specifying a zero value for the Epsilon component setting in the preference file
for the component in question. For example, if you wish to use scaled perturbation in Component 0, the
preference file should include:

ComponentSettings (
 0 (
 RelaxationCoefficient (1.0 ())
 Epsilon (0 ())
 Tolerance (1e-6 ())

 …
)
)

When Epsilon is specified as zero, SPARK computes the perturbation value for the variable y as:

() URoundToleranceyhyyysigny ⋅⋅+⋅=∆ ,,max)(&& (3.9)

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 59

Here, URound is the machine unit round-off error. The derivative, y& , with respect to the independent
variable (usually time) is approximated using the explicit Euler scheme. The term yhy &⋅+ is included to
represent the predicted value for y at the next step. This is because even if y happens to be near zero, it is
quite possible that a nearby value of y is not so small, and selecting yhy &⋅+ will prevent a near zero
perturbation from being used. In the event that y and yhy &⋅+ are both near zero, the error tolerance
Tolerance is used as a lower bound in the formula to prevent using too small a perturbation. Indeed, by
setting the error tolerance, you tell the SPARK solver that it is the smallest number which is relevant with
respect to the break variables y in this component.

The formula in Equation (3.9) perturbs about half of the digits of the variable y when y is significantly
larger than Tolerance. Finally, note that the sign of the perturbation y∆ computed with Equation (3.9) will
be negative if the solution is decreasing. Unfortunately, this choice is a potentially source of difficulty for
problems where some functions are undefined for y < 0 or not differentiable at y = 0.

3.10.7 Update Component Settings at Run Time

In some situations you may need to change some parameters of the component settings at run-time. To
support this need, SPARK optionally checks the time stamp of the problem preference file while executing,
and when it changes the file is read again, loading the new component settings. These settings become
effective for the next time step. However, in SPARK 1.0, only the following parameters can be updated at
run-time using this mechanism:

• Relaxation coefficient
• Tolerance
• Epsilon

To allow updating component settings at run time, the following entry should appear in the run control file:

UpdateComponentSettingsAtRunTime (1 ())

If this is not specified, the parameters of the component settings will not be updated at run-time.

These controls give you control over the convergence process, which may be important for large nonlinear
problems requiring long run times. In order to determine if and when you need to change the settings, you
should set the diagnostic level 1 or 3 (see Section 3.11.5, page 63) to be able to follow interactively the
convergence process.

3.11 Debugging SPARK Programs
Often SPARK will find calculation sequences leading to successful problem solution without intervention.
However, solution of nonlinear differential and algebraic equations is not easy, even for SPARK, and in
some cases you may get error messages. These may be during the initial processing where your input is
being parsed, while executing the setup program that converts it to a solver program, or during execution of
the solver program, i.e., at run time.

SPARK 1.0 User's Manual

60 •••• Section 3 Advanced Topics

3.11.1 Parsing Errors

Parsing errors are usually syntax errors, as in any programming language. These errors are reported in the
parser.log file, normally placed in your project directory. They should be easy to interpret, but if not the
command reference in Section 4 (See Page 71) may be helpful.

3.11.2 Setup Errors

During the setup phase SPARK may have other difficulties due to input errors. For example, you may have
specified a problem for which no matching can be found between equations and variables. This can happen
even if you have an equal number of equations and free variables (i.e., links). As an example of this,
consider the 4sum problem when x1, x5, x6, and x7 are specified as inputs. This is not well posed because
it over-determines the equation for s3 while under-determining s2. SPARK will report such errors as
“unable to find a matching.” Subtle errors of this nature can occur in development of complex models.
Setup errors are reported in either setup.log or probName.log, depending upon your platform.

Unfortunately, lack of matching can also arise for well posed problems if you have not provided enough
inverses for your atomic objects. Complex models involve equations that maybe difficult to invert, even
with symbolic algebra tools. Consequently, it is common for SPARK users to omit the difficult inverses for
some equations, providing only those easily come by. Usually, this is acceptable practice since SPARK
explores many paths to a get a solution sequence and usually finds one. However, if you are experiencing
matching problems and have omitted some inverses you may want to consider using implicit inverses. For
example, if you cannot solve g(x,y,z) = 0 for x, simply write for the inverse

x f x y z= (, ,)

where f(x,y,z) is an algebraic rearrangement of g(x,y,z) that is as far as you can go in isolating x. Best
numerical performance will be obtained if f(x,y,z) is only weakly dependent upon x. However, if all else
fails, simply write:

),,(zyxgxx +=

SPARK will discover that x is on both sides of this “inverse” and place it in the cut set, in effect inverting
the troublesome equation numerically.

3.11.3 Solution Difficulties

Even after SPARK has successfully created a solver program there can be difficulties in finding a solution.
This is because of the nature of nonlinear systems of equations, with which numerical analysts have been
struggling for many years. Here we are referring to convergence difficulties; the solver iterates the
maximum allowed number of times (set by default to 50) without bringing the solution into the error
tolerance (default 1.e-6). If you work with complex systems, resolving these difficulties is the greatest
challenge you will face. Run-time errors are reported to run.log or probName.log, depending upon your
platform. More detailed error messages and diagnostic can be found in error.log.

With SPARK, you attack convergence problems in two basic ways: estimating better values to start the
iteration, and by trying to alter the solution sequence. The importance of good iteration initial values is well
known; in this regard, the only difference between SPARK and other simulation tools is with SPARK, due
to reduction in the number of iteration variables, you do not have to specify as many guess values. We
discuss how to set initial iteration values in Section 3.3.2 (See Page 40).

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 61

The second strategy, controlling the solution sequence, is based on the observation that iteration can usually
be done many different ways, often differing in the direction in which calculations flow around cycles in the
problem graph. Sometimes convergence can be achieved by calculating in the opposite direction.
Consequently, SPARK provides syntax in the definition of problems and classes in order to control,
indirectly, the calculation direction. You can always see the solution sequence chosen by SPARK in the
.eqs file produced by the setup program. Open this file with a suitable viewer or editor and use it as guide
in understanding and improving your problem solution sequence.

Match_level is very effective in reversing the direction of calculations in SPARK. By default, matchings
are found based only on order of objects and links found in the problem specification file. By forcing or
encouraging a different matching you can often improve numerical performance, and perhaps achieve
convergence.

The relevant keywords are match_level and break_level. Each can be set to a value between 0 and 10.
When left unspecified, these levels default to 5. The match_level keyword is placed in a link or port
statement, and specifies the relative desirability of matching that link variable to a particular object in the
link statement. For example,

link x a_obj.p1 match_level = 10, b_obj.p3;

tells SPARK that you would prefer that object a_obj should be matched with the x problem variable. You
could say somewhat the same thing by the statement
link x a_obj.p1, b_obj.p3 match_level = 0;

which says you would prefer that x not be matched with object b_obj. Provided that you not simply
encourage selection of the matching that would be found by default, the direction of calculations in the
problem will be reversed. Currently, the second form is stronger that the first due to the implementation of
the matching algorithm used in SPARK.

Break_level parallels the match_level idea, but applies to the discovery of a cut set, i.e., selection of
variables to break cycles in the problem graph. When there is a cycle, usually many problem variables are
encountered as you work your way around the loop. It is easy to see that any of these variables will break
the loop. By default, SPARK sets break preference to 5 for all variables, so the break selected is
determined solely by order in the problem definition. Yet, there are sometimes arguments for preferring
one over another.

A simple example is based on starting value availability. If you have the choice of breaking on enthalpy or
temperature, you may prefer the latter simply because you are likely to be able to better estimate iteration
starting values for temperature. Some analysts also feel that different break variables lead to better
convergence. However, the “gain” around the loop is going to be the same regardless, so this may not be a
strong argument. Nonetheless, if you have any reason or hunch that a particular variable would be a better
break, give it a high break_level. To do so, include it in the link statement:

link x a_obj.p1 break_level = 7, b_obj.p3 match_level = 10;

In the current implementation, matching and break levels only encourage SPARK to match or break the way
you wish. This is because we wanted to give SPARK maximum opportunity to find solution sequences,
and denying certain matchings and breaks may prevent any solution at all. In later versions we may also
provide forced matchings and breaks.

Finally, it should be noted that these are only indirect tools, sometimes having little or no effect on the
solution sequence. For example, setting break_level on a link that does not happen to be in a cycle will
have no effect, and as already noted setting a match_level to force a match that is selected by default is also
ineffective.

SPARK 1.0 User's Manual

62 •••• Section 3 Advanced Topics

3.11.4 Trace File Mechanism

Sometimes it may be helpful to see intermediate results of the iterative solution process. This is especially
important when your problem is experiencing convergence difficulties. You can get such output by using
the TraceFiles segment under the key ComponentSettings for the component in question in the
probName.prf file. This is done for individual components (See Section 3.10.1, page 53). As with solution
control parameters (See Section 3.10, page 53), setting this flag is done most conveniently with the aid of a
SPARK graphical user interface. Otherwise, you can edit the probName.prf file directly with any text
editor.

The TraceFiles segment has five allowed values as shown in Table 3.5.

Table 3.5 Keys and Values for TraceFiles Segment

TraceFiles Key and Value Meaning

() No trace output.

Jacobian (fileName ()) Jacobian of residual functions printed
whenever it is recomputed.

Increments (fileName ()) Increments of all variables printed at every
iteration.

Residuals (fileName ()) Break residuals printed at every iteration.

Variables (fileName ()) All problem variables printed at every
iteration.

Within each component, you can specify up to four trace files entries with the name of each file preceded by
one of the keys listed in Table 3.5. Each key specifies the type of the trace file that will be written to the
file following the type key. For example, the following segment could be inserted in ComponentSettings 0
of a problem preference file:

ComponentSettings (
 0 (
 TraceFiles (
 Jacobian (spring_jac.trc ())
 Increments (spring_inc.trc ())
 Residuals (spring_res.trc ())
 Variables (spring_var.trc ())
)
 …
)
)

Any file name with the extension .trc can be used, except it cannot be repeated. That is, you cannot use the
same file name for tracing in the same component, or in a different component.

If no trace files are wanted, the TraceFiles segment for the component should be:

TraceFiles ()

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 63

3.11.5 Problem-level Diagnostic Reports

In addition to the Trace facility (See Section 3.11.4, page 62) SPARK has a problem-level diagnostic
facility. To use this feature, the DiagnosticLevel keyword must be set to something higher than 0 in the
problem run control file (See Section 2.2.1, page 6). Three different modes trigger increasing level of
diagnostic to the cout stream. When running the runspark command, the output goes to the run.log file.
The default mode is the silent mode.

Table 3.6 Problem-level Diagnostic Flag Values

Mode Entry in run file Description

Silent (default mode if no
DiagnosticLevel is specified)

DiagnosticLevel (0 ()) Outputs run control parameters, input
data, output and snapshot files if any
specified

Report convergence DiagnosticLevel (1 ()) At each iteration, the convergence
progress is reported for each
component. Includes scaled residuals’
norm, convergence error, requested
tolerance, name and value of the
worst-offender variable.

Report results DiagnosticLevel (2 ()) All variables are reported with their
names and values at each step.

Report convergence + Results DiagnosticLevel (3 ()) Combines level 1 and 2.

3.12 Output and Post Processing
When SPARK runs there is output to the screen and to an output file with extension .out. The screen output
is primarily for visual feedback, letting you know where SPARK is in processing your problem. The output
file contains results of the numerical solution process at each time step. The format of the output file is
exactly like that of input files, i.e.,

n label label label

t0 value value value

t1 value value value

etc.

where n is the number of reported variables, each label is a problem variable with the report keyword
expressed in the problem file, and each value is the value for the corresponding variable at time ti.

The output of SPARK can be read by conventional spreadsheet and plotting programs. If you use Microsoft
Excel or a similar program, simply open the SPARK output file into a worksheet and use tabs as the
delimiting character between fields. This will place your output neatly into rows and columns, from which

SPARK 1.0 User's Manual

64 •••• Section 3 Advanced Topics

you can construct plots (charts) in the usual Excel manner. If you use gnuplot, a program called makegnu is
provided with WinSPARK that will generate an input file for that program.24 To use makegnu, type:

makegnu room_fc.out room_fc.plt <enter>

The output file, room_fc.gnu, will contain the gnuplot commands, e.g.:

set data style lines
set xlabel "time"
set ylabel "mcp"
plot "room_fc.out" using 1:2 notitle
pause -1 "Press <enter>"
set ylabel "Q_flow"
plot "room_fc.out" using 1:3 notitle
pause -1 "Press <enter>"
set ylabel "Ta"
plot "room_fc.out" using 1:4 notitle
pause -1 "Press <enter>"
set ylabel "T_floor"
plot "room_fc.out" using 1:5 notitle
pause -1 "Press <enter>"

Then to plot with gnuplot, type

gnuplot room_fc.plt <enter>

This assumes you have gnuplot in your command path.

More elaborate plots, combining several results on the same plot, for example, can be done by editing the
gnuplot input file, or by running gnuplot interactively. The gnuplot documentation should be consulted for
more information.

3.13 Snapshot Files and Restarting Solutions
There are occasions on which you may want to stop a simulation, then restart it from the same point at a
later time. This need can arise when the problem experiences a long run time, or a difficult solution. Or,
you may want to repeat a simulation using precisely the same initializations of dynamic and break variables.
These techniques are supported in SPARK with the notion of snapshot files. You can request that snapshot
files be generated at InitialTime and/or FinalTime as discussed below.

A snapshot file contains the values of all problem variables in a format identical to that of a normal output
report. And, because SPARK input files and output files have the same format, you can specify a snapshot
file as an input file in a subsequent run of the same problem.

You request generation of snapshot files by specifying corresponding keys in the run control file (See
Section 3.14, page 65), along with the desired name for the snapshot file. Two keys are available,
InitialSnapshotFile and FinalSnapshotFile. The values of these keys should be paths to the files where you
want the results saved. For example, if you want both initial and final snapshot files, your run control file
probName.run must contain the following two clauses:

InitialSnapshotFile (probName.init ())
FinalSnapshotFile (probName.snap ())

24 Although not provided in the VisualSPARK release, makegnu is available free from Ayres Sowell
Associates, Inc. and will run on UNIX as well as Windows platforms.

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 65

InitialSnapshotFile generates a snapshot file with the initial time solution in probName.init, whereas
FinalSnapshotFile generates a snapshot file with the solution at the final time in probName.snap. Note that
the file names, including the extensions, are arbitrary, i.e., you can use whatever extension you wish.
Normally, you will want to include the file path to specify where it is to be saved. In the example, it is
saved in the current working directory.

To use a snapshot file for initializing a subsequent run you simply specify it in the InputFiles clause in the
run control file, with the other input files. For example, to restart your problem initialized from the final
solution of the previous run, captured in probName.snap, in probName.run modify the InputFiles clause to
read:

InputFiles (
 probName.snap ()
 probName.inp ()
)

Another way to use snapshot file to restart a problem is to first solve a static problem (no integrators)
derived from the dynamic problem and with initial conditions for some of the unknowns of the dynamic
problem. This is mimicking what we'll do automatically in SPARK 2. The result snapshot file of the
solution of the static problem can then be used to start the dynamic problem with the desired initial
conditions enforced.

A snapshot file contains the values for all the problem variables, not just those that were tagged with the
report keyword in the problem definition file. This means that a snapshot is a very powerful reporting and
diagnostic mechanism as well as serving as restart initialization files. Note that if FinalSnapshotFile was
specified, in the event of a nonconvergence or other solution failure, then the snapshot file will be generated
at the time where failure occurred. This provides values of all variables at the point of non convergence,
which might be helpful in discovering the reasons for non convergence.

3.14 Run Control File
We introduced the SPARK run control file, probName.run, in the Section 2.2.1 examples (See page 6).
There, we were concerned with only the basic, required elements of this file needed to run simple problems.
In this Section we will examine the run control file further, showing the format as well as all aspects of a
SPARK run that can be controlled from it.

The run control information needed for a SPARK problem comprises eleven keys and values as shown in
Table 3.7. Items shown in boldface are required.

SPARK 1.0 User's Manual

66 •••• Section 3 Advanced Topics

Table 3.7 Run Controls

Key Definition Typical value

InitialTime The time at which the simulation
begins.

0.0

FinalTime The time at which the simulation
ends.

0.0

TimeIncrement The time between solution points.25 1.0

FirstReport The time at which the first output is
desired.

0.0

ReportCycle The time interval between output
reports.

>= TimeIncrement

DiagnosticLevel Level of diagnostic output desired. 0

InputFiles List of input file paths. probName.inp
c:\Phoenix\weather.inp

OutputFile Output file path. probName.out

UpdateComponentSettingsAtRunTime Set to 1 to allow updating
component settings at run time (only
Tolerance, Epsilon and
RelaxationCoefficient can be
updated)

0 (default)

InitialSnapshotFile Initial time snapshot file path. probName.init

FinalSnapshotFile Final time snapshot file path. probName.snap

This information is stored in the file probName.run using the preference file format, as described in
Appendix B (See page 87). A typical run control file is then:

(
InitialTime (0.0 ())
FinalTime (5.0 ())
TimeIncrement (0.1 ())
FirstReport (0.0 ())
ReportCycle (0.1 ())
DiagnosticLevel (3 ())
InputFiles (frst_ord.inp ()
 frst_ord_ic.inp ()
)
OutputFile (frst_ord.out ())
InitialSnapshotFile (frst_ord_dyn.init ())
FinalSnapshotFile (frst_ord_dyn.snap ())
UpdateComponentSettingsAtRunTime (1 ())
)

25 In SPARK 1.0, the stepsize or time increment is constant during the course of the simulation. Future
versions of SPARK will support variable time-stepping.

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 67

3.15 Using SPARK library functions in an atomic
class
In Section 3.1 (See page 37), we introduced the boolean function IsInitialTime() used in the implementation
of the Euler intergator class. The function IsInitialTime() is a global function that belongs to the SPARK
library. The SPARK library functions that can be called from within the inverse of an atomic class fall into
four categories: error handling functions, access functions, predicate functions and math functions. The
C++ prototypes for the SPARK library functions can be found in the header files in the directory
vspark\inc\. To be able to use the SPARK library functions in an atomic class, the header file spark.h
should be included in the file using the C preprocessor #define directive.

3.15.1 Error handling functions

These library functions provide support to handle errors from within an atomic class.

The library function WriteToErrorLog() lets you write a message to the error log file, called error.log. The
prototype for this function is:

void WriteToErrorLog(

 const char* strFileName, // name of the atomic class

 const char* strInverseName, // name of the inverse function

 const char* strMsg); // message to write out

For example, in the class effprl.cc defined in the HVAC toolkit, when the reference heat exchanger
effectiveness eff becomes greater than one, we reset the value to a “typical” value and write an error
message to the error log to notify the user. This can be done using the following code snippet.

double ntuprl (ArgList args)

{…

 char ErrMsg[100];

 sprintf(ErrMsg, "eff = effp * cRatio = %lf must be <= 1.0\n",

 eff);

 ::WriteToErrorLog(__FILE__26, "ntuprl()", ErrMsg);

…

}

If you wish to stop the execution of the simulation from within an atomic class, you should use the function
ExitFromAtomicClass() 27 to ensure proper destruction of the objects instantiated by the SPARK solver.
The argument list and the usage of this function is similar to the one of the function WriteToErrorLog().

26 __FILE__ is the name of a predefined ANSI C macro that the compiler/preprocessor expands to a
C-string (i.e. an object of type char*) containing the name of the current source file.

27 Avoid calling the C library function exit() directly from an atomic class as this does not allow SPARK to
carry out necessary cleanup tasks. The SPARK library function ExitFromAtomicClass() calls in turn the C
function exit().

SPARK 1.0 User's Manual

68 •••• Section 3 Advanced Topics

void ExitFromAtomicClass(

 const char* strFileName, // name of the atomic class

 const char* strInverseName, // name of the inverse function

 const char* strErrMsg); // description of error

3.15.2 Predicate functions

These library functions return True or False depending on the state of the simulator.
bool IsInitialTime();

bool IsFinalTime();

3.15.3 Access functions

These library functions provide read-only access to some internal variables of the SPARK solver.
unsigned GetStepCount();

double GetClock();

double GetStepsize();

3.15.4 Math functions

These library functions provide basic mathematical operations that are not part of the C/C++ math library
defined in the header file <math.h>.28 They are used in the implementation of the SPARK HVAC toolkit.
These functions are self-explanatory.

double min(double , double);

double max(double , double);

double sign(double);

3.15.5 Access methods for the TArgument class

The SPARK inverses are C functions that expect a list of arguments of the type TArgument. The
TArgument type is implemented as a C++ class. The class declaration can be found in the header file
vspark\inc\value.h. The list of methods that can be used with a TArgument object is shown in Table 3.8.

Table 3.8 List of access methods for an object of the TArgument class

Method prototype Description

operator TArgument::double() const Returns the current value of the link as a
double

operator TArgument::GetVal() const Same as previous method.

28 In the C++ standard library, the header files assumed from the C standard now have the new prefic c
instead of the old extension .h, i.e., #include <math.h> becomes #include <cmath>.

 SPARK 1.0 User's Manual

 Section 3 Advanced Topics •••• 69

double TArgument::operator[](int idx) const Returns the idx (idx>0) past value of the
link as a double

double TArgument::GetInit() const Returns the initial value of the link as a
double

double TArgument::GetMin() const Returns the min value of the link as a
double

double TArgument::GetMax() const Returns the max value of the link as a
double

char* TArgument::GetName() const Returns the name of the link as a C-string29

char* TArgument::GetUnit() const Returns the unit of the link as a C-string

29 We call a C-string an object of type char* .

 SPARK 1.0 User's Manual

 Section 4 SPARK Language Reference •••• 71

Section 4 SPARK Language
Reference

4.1 Notation Used in this Section
1. Keywords are shown uppercase, although they are case insensitive in the language.

2. ♦ means required syntax.
3. val_or_par means any value, or a parameter name.
4. Items separated by | means choose one of the items (e.g., <x|y|z> means x or y or z)
5. Items inside question marks, e.g., ?connections1?, are defined later in the construct in which they

appear.
6. When referring to hierarchy, the problem is called the highest level, while the atomic class is the

lowest.

4.2 Special characters
Special characters are those used by the SPARK parser to identify parts of the language. They should not be
used in user names.

1. Used in SPARK syntax: " # () , . ; = [] ' ` { } ~ /* SPACE TAB NL (newline)
2. Delimiters: SPACE TAB NL. More than one of these characters or combination are ignored.
3. The statement terminator is the semicolon (;).

4.3 Names and Other Strings

4.3.1 Reserved Names
#endif #ifdef ABSTRACT

SPARK 1.0 User's Manual

72 •••• Section 4 SPARK Language Reference

ABSTRACT_END BAD_INVERSES BREAK_LEVEL

CONNECT_HINT DECLARE DEFAULT

EQUATIONS FUNCTIONS GLOBAL_TIME

GLOBAL_TIME_STEP INIT PRED_FROM_LINK

INPUT KEYWORDS LINK

MATCH_LEVEL MAX MIN

NOERR PARAMETER PAST_VALUE_ONLY

PORT PRED PROBE

REPORT SIMULT_OUT UPDATE_FROM_LINK

VAL

Notes: Reserved names are case insensitive, except for #ifdef and #endif.

4.3.2 Rules for User Specified Names

1. They must not contain any reserved characters.
2. They must not begin with a digit.
3. They are case sensitive.
4. They may not be the same as reserved names.
5. They can be of any length.

4.3.3 Literals

User specified literal strings are enclosed inside double quotes, e.g., "This is a literal". They can contain
any character except the double quote (").

4.4 Comments
There are two kinds of comments:

1. /*comment...*/ C-like comment
2. //comment... C++ style comment to end of line

4.5 Compound Statements
A compound statement are delimited by curly braces: { … }. Examples of compound statements are
FUNCTIONS and EQUATIONS.

 SPARK 1.0 User's Manual

 Section 4 SPARK Language Reference •••• 73

4.6 Atomic Class File
The SPARK atomic class is the smallest modeling element. Atomic classes may be combined in macro
classes to form larger modeling elements, or used directly in problem files.

File name convention : class_name.cc

Format:
/* CLASS class_name "description..."
 KEYWORDS=keyword1,...;
 ABSTRACT
*/
#ifdef SPARK_PARSER ♦ if file contains C++ functions
PARAMETER statements
PORT statements ♦
EQUATIONS { equation statements }
FUNCTIONS { function statements } ♦
#endif /*SPARK_PARSER*/ ♦ if file contains C++ functions
#include "spark.h" ♦ if file contains C++ functions

 Inverse C++ functions go here.

Notes:

1. PARAMETER statements must appear before they are referenced.
2. PORT statements must appear before EQUATIONS and FUNCTIONS statements.
3. While the material in the /*...*/ header is ignored by the parser, it may be used by browsers and/or

utility programs.

4.7 Macro Class File
A SPARK macro class connects atomic and other macro classes to form larger modeling elements.

File name convention: class_name.cm

Format:
/* CLASS_MACRO class_name "description..."
KEYWORDS=keyword1,...;
ABSTRACT
*/
PARAMETER statements
PORT statements ♦
PROBE statements
DECLARE statements ♦
LINK statements ♦

Notes and restrictions:

1. PARAMETER statements must appear before they are referenced.
2. PORT statements must appear before any DECLARE or LINK statements.
3. DECLARE statements must appear before any LINK statements that refer to the objects defined by

DECLAREs.

SPARK 1.0 User's Manual

74 •••• Section 4 SPARK Language Reference

4. While the material in the /*...*/ header is ignored by the parser, it may be used by browsers and/or
utility programs.

4.8 Problem File
The SPARK problem file combines macro and/or atomic classes to form the largest modeling element.

File name convention: problem_name.pr.

Format:
/* PROBLEM class_name "description..."
KEYWORDS=keyword1,...;
ABSTRACT
*/
PARAMETER statements
PROBE statements
DECLARE statements ♦
LINK statements ♦
INPUT statements ♦ 30

Notes:

1. PARAMETER statements must appear before they are referenced.
2. DECLARE statements must appear before any LINK statements that refer to the objects defined

by DECLAREs.
3. While the material in the /*...*/ header is ignored by the parser, it may be used by browsers and/or

utility programs.

4.9 PORT Statement
The PORT statement describes an externally visible connection point (interface variable) of a class. When
an object is instantiated from a class by a DECLARE statement, the connections can only be made to its
ports.

The PORT statement has two forms :

1. Atomic port, which does not have subports.
2. Macro port, which has subports.

An atomic port has the form:
 PORT port_name ♦
 [unit]
 "description..."
 CONNECT_HINT="-class1.portx, class2.porty"
 NOERR
 DEFAULT=val_or_par1
 INIT=val_or_par2 MIN=val_or_par3 MAX=val_or_par4
 BREAK_LEVEL=val_or_par5 MATCH_LEVEL=val_or_par6 ;

30 Alternatively, LINK statements with INPUT keyword can be used.

 SPARK 1.0 User's Manual

 Section 4 SPARK Language Reference •••• 75

Here:

1. port_name: Name of the port; must not contain any reserved characters.
2. [unit]: Unit of the port. It is used to give a warning if variables with different units are linked.
3. "description...": Short description of the port. This field is used by browsers.
4. CONNECT_HINT: Used by browsers to determine acceptable connections.

"-class1.portx, class2.porty" means that connecting this port to portx of any instance of class1 is
not permitted, but connecting this port to porty of any instance of class2 is encouraged. For
acceptability, first units, then CONNECT_HINTs are checked.

5. NOERR: Do not give error message if this port is not connected when this class is used
(instantiated). Allows ports that can be optionally used.

6. DEFAULT: If this port is not connected, behave as if this value is fixed at val_or_par1.
7. INIT, MIN, MAX: Initial, minimum, and maximum values assigned to variable created by

connections to this port. Higher level settings will take precedence.
8. BREAK_LEVEL, MATCH_LEVEL: The default break_level and match_level values for

connections to this port.

A macro port has the form:
PORT port_name ♦
 [unit1]
 "port description..."
 CONNECT_HINT="-class1.portx,class2.porty"
 NOERR
 .subport_name1 ♦
 [unit2]
 "subport description..."
 DEFAULT=val_or_par1
 INIT=val_or_par2 MIN=val_or_par3 MAX=val_or_par4
 BREAK_LEVEL=val_or_par5 MATCH_LEVEL=val_or_par6
 , .subport_name2
 etc.
 , ...
 ;

1. Port_name: Name of the port; must not contain any reserved characters.
2. [unit1]: Unit of the port. It is used to give a warning if variables with different units are linked.
3. "description...": Short description of the port. This field is used by browsers.
4. CONNECT_HINT: Used by browsers to determine acceptable connections.

"-class1.portx, class2.porty" means that connecting this port to portx of any instance of class1 is
not permitted, but connecting this port to porty of any instance of class2 is encouraged. For
acceptability, first units, then CONNECT_HINTs are checked.

5. NOERR: Do NOT give error message if this port is not connected when this class is used
(instantiated).

6. .subport_name: Name of the subport. Note the leading dot (.). If subport contains other subports,
this is specified as .subport_name.subport_of_subport_ Note that subport_of_subport_name is
specified for subport_of_ . For example, if we have port x with subports a, b and subport a has its
subports a1,a2 we write:
 PORT x ...etc.
 .a.a1 ...etc.
 , .a.a2 ...etc.
 , .b ...etc. ;

SPARK 1.0 User's Manual

76 •••• Section 4 SPARK Language Reference

7. DEFAULT: If this subport is not connected, behave as if this value is fixed at val_or_par.
8. INIT, MIN, MAX: Initial, minimum, and maximum values assigned to variable created by

connections to this port. Higher level settings will take precedence.
9. BREAK_LEVEL, MATCH_LEVEL: The default break_level and match_level values for

connections to this subport.

4.10 PARAMETER Statement
The PARAMETER statement is used to assign a numeric or symbolic value to a name. When this name is
used in any place that can take the parameter name, the value of the parameter is substituted in place of the
name. For example the following two statements:

PARAMETER abc = 12.3 ;

PORT x INIT=abc ;

have the effect:
PORT x INIT=12.3 ;

The parameter statement has the form
PARAMETER name1 = substitution_value1 , name2 = substitution_value2 , ... ;

If a problem and one of its classes have parameters of the same name, the value of the problem's parameter
is used. Similarly, if a macro and one of its classes have parameters of the same name, the value of the
macro's parameter is used. That is, higher level PARAMETER definitions take precedence.

4.11 PROBE statement
Without PROBE, lower level links (e.g., in a macro object) are not visible at higher levels (e.g., a problem
file) unless they are connected through ports. The PROBE statement is provided to allow assigning values
to certain keywords for lower level links from a higher level. It can also be used to report such links. See
Section 3.7 (page 49) for examples.

The PROBE statement has the form
PROBE name <?port_resolution? | ?link_resolution?> ♦
 INIT=val_or_par2 MIN=val_or_par3 MAX=val_or_par4
 BREAK_LEVEL=val_or_par5 MATCH_LEVEL=val_or_par6
 INPUT REPORT
 PRED_FROM_LINK=<?port_resolution? | ?link_resolution?>
 UPDATE_FROM_LINK=<?port_resolution? |
?link_resolution?>
 VAL=val_or_par;

Here:

1. name: Name of probe.
2. ?port_resolution?: Concatenated object name followed by port.subport name that uniquely

identifies the connection. It has the form:
 obj1`obj2...port.subport.subport_of_subport...

 SPARK 1.0 User's Manual

 Section 4 SPARK Language Reference •••• 77

3. ?link_resolution? : Concatenated object name followed by link name followed by subport of link
that uniquely identifies the link. It has the form:
 obj1`obj2...~link.port.subport.subport_of_subport...
For problem level links this has the form ~link5.subport. subport_of_subport…

4. INIT, MIN, MAX, BREAK_LEVEL, MATCH_LEVEL, INPUT, REPORT,
UPDATE_FROM_LINK, PRED_FROM_LINK, VAL: Same as for LINK statement.

4.12 DECLARE statement
The DECLARE statement is used to instantiate a class, creating one or more objects. It has the form

DECLARE class_name obj_name1, obj_name2, ... ;

Here obj_name can be either a valid name or a PARAMETER name that defines a valid name.

4.13 LINK statement
The LINK statement is used to make connections between ports of objects instantiated in this class and/or
port(s) of this class. It has the form

LINK name "link_description" ?entries1? , ?entries2? , ...
 , (.sublink1...){ ?entries3? , ?entries4? , ... }
 , (.sublinkN...){ ?entriesM? , ... } ;

The optional (.sublink1...){ ... } form means that the entries inside{} apply to the .sublink1... component of
the macro-link. Here, .sublink... is a valid .portal... name for this link. The ?entriesX? contains items from
the following, where at least the ?connection? item must be present:

 < INPUT
 < REPORT
 < GLOBAL_TIME | GLOBAL_TIME_STEP >
 < VAL = val_or_par >
 < INIT = val_or_par >
 < MIN = val_or_par >
 < MAX = val_or_par >
 < PRED_FROM_LINK = linkFrom | linkFrom.sublink... >
 < UPDATE_FROM_LINK = linkFrom | linkFrom.sublink... >
 ?connection?
 < BREAK_LEVEL = val_or_par >
 < MATCH_LEVEL = val_or_par >

Note that: INPUT, PRED_FROM_LINK, UPDATE_FROM_LINK, GLOBAL_TIME,
GLOBAL_TIME_STEP qualifiers are mutually exclusive; only one of them may be specified in a LINK
statement.

Here:

1. name : Link name.
2. "link_description" : Description , used by browsers.
3. INPUT : Input the variable created by this link, using link name as input variable name.
4. REPORT : Output the variable referenced by this link, using link name as report variable name.

SPARK 1.0 User's Manual

78 •••• Section 4 SPARK Language Reference

5. VAL = val_or_par : Set the value of the variable defined by this link to a constant value
'val_or_par'. It assigns the constant value, as if it is input, to the variable defined by the LINK
statement. This value can propagate to outside of this class if in the same link statement there are
connection(s) to the port(s) of this class. This value can be overridden later by the INPUT or
GLOBAL_TIME keywords referencing the same variable at higher levels.

6. INIT = val_or_par : Gives initial value to the variable. If the variable referenced by this link is a
break variable the value is used only once, in the first Newton-Raphson iteration.

7. MIN, MAX : Give min, max value to the variable created by this link.
8. PRED_FROM_LINK : If the variable referenced by this link is a break variable, give initial value

to it from the current value of linkFrom. Unlike the INIT keyword, PRED_FROM_LINK supplies
the initial value for Newton-Raphson for every time step.

9. UPDATE_FROM_LINK : Makes the variable that is created by current link statement a previous
value variable. Updating occurs at the beginning of the time step, prior to solving the system of
equations. The value of the previous value variable remains the same during Newton-Raphson
iterations.

10. GLOBAL_TIME : Connects the variable referenced by this link to calculation time value (t) that is
specified by run control data.

11. GLOBAL_TIME_STEP :Connects the variable referenced by this link to calculation time step (dt)
value that is specified by run control data.

12. ?connection? : This specifies either .port_of_this_class including the resolution of the subport if
necessary e.g. .port_of_this_class .port_of_this_class.subport…, or connection to a port of an
object declared in this class including the resolution of the subport,e.g.
object.port
object.port.subport...

13. BREAK_LEVEL : Break_level given to this connection.
14. MATCH_LEVEL : Match_level given to this connection.

4.14 INPUT Statement
The INPUT statement is exactly like the LINK statement with the INPUT keyword specified. Its is merely
an alternative style.

4.15 EQUATIONS statement
The EQUATION statement specifies the equations that are used to generate the C++ functions of this class.
In future versions, this statement may be used by browsers and symbolic processors. It is a compound
statement. An example is

EQUATIONS {
 p1.a = x ;
 p1.b = y ;
 p2 = z ;
 x = y^2 * z^2 , x > 0 ;
 BAD_INVERSES = y, z ;
}

Notes:

1. Currently, the parser does not use the Equations section. In future versions, the Functions section
may be optionally generated from the Equations section.

 SPARK 1.0 User's Manual

 Section 4 SPARK Language Reference •••• 79

2. In this example, x, y and z are “helper” symbols to simplify the equation. The notation p1.a means
the a subport of port p1. In addition to the equation relating x, y, and z, we restrict x to positive
values.

3. Currently, SPARK recognizes only one equation in an atomic class.

4.16 FUNCTIONS statement
The FUNCTIONS statement specifies the C++ functions associated with the ports. It is a compound
statement of the form

FUNCTIONS {
 port1 = inverse_fun1(port2, port3,...) ;
 port2 = inverse_fun2(port1, port3,...)
 PRED = predictor_fun1(port1, port2, port3,...) ;
 port3 ;
}

Here inverse_fun1 is the C++ function that calculates the value of port1 from the values of all ports listed
in (port2, port3,…). Similarly for inverse_fun2, where the PRED = construct is also specifies the C++
function that calculates the predicted value of port2, as might be used in some types of numerical
integration classes. If there is no C++ function available for a port, either omit that port under
FUNCTION, or give only the name of the port, e.g., port3 in the example.

4.17 Input From Files
SPARK does not distinguish between constant and time-varying boundary condition variables, i.e., inputs.
All INPUTs (or LINKs with the INPUT keyword specified) will be sought from .inp files specified for the
problem. To accommodate time varying inputs, the .inp file has the form

n var1 var2 var3 … varn

t0 val1 val2 val3 … valn

t1 val1 val2 val3 … valn

t2 val1 val2 val3 … valn

*

Here vark are the variable names defined as inputs and valk are their values at times ti. Constant values have
the same value repeated at each time value. The final line with only * in it is optional, meaning that all
values remain fixed from that point forward.

It is sometimes more convenient to use multiple input files, thus allowing different time stamp sequences.
The input files are specified in the InputFiles clause of the probName.run file. See Section 3.4, page 43,
for examples of when this might be useful. At run time, the SPARK solver opens each of the listed files,
which are later searched when looking for input values.

 SPARK 1.0 User's Manual

 Appendix A Using the HVAC Tool Kit •••• 81

Appendix A Using the HVAC
Tool Kit

A.1 The SPARK HVAC Toolkit
The SPARK HVAC Toolkit is based on the ASHRAE Secondary Systems Toolkit (Brandemuehl 1993),
supplemented with primary equipment models from DOE-2 (LBL 1984). This library of HVAC
components is limited to steady state models. The models included are listed in Table A.1.

These classes are located in the vspark\hvactk\class directory, or in the vspark\globalclass directory if they
are general in nature and thus apply to a wider range of problems. Each class has internal documentation in
the form of a commented header. You should consult this header before using one of these classes. In
addition, these headers are separately provided in rich text format (RTF) in the self-extracting pkzip file
rtflib.exe in vspark\bin. You can examine these by executing this file with the class name you wish to see as
an argument
rtflib cond.rtf <enter>

This will place the documentation for the cond class in the current working directory where it can be viewed
with Microsoft Word, the free Microsoft Word Viewer available from Microsoft, or any other RTF viewer.
These files are also provided in pdf format for viewing with the Adobe Acrobat Reader.

Many of these classes are lower-level macro or atomic classes from which the user level classes are built.
These are automatically introduced into your problem as needed when you declare an object of the higher
level class.

The SPARK classes in the hvactk\class directory are implemented using normal, atomic ports and links.
Another version of the HVAC class library employs macro links and ports for the same set of classes where
appropriate. These classes are in the hvactkMP\class directory.

A.2 Example Usage
Some examples of using these classes have already been seen in examples in this manual. For example, we
used the cond.cc class in the room_fc problem in Section 2.7 (See page 28). In addition, every class has a
test driver .pr file and associated .inp file in compressed form in pr.exe in vspark\bin. You can access one
of these test drivers by executing pr.exe with the class name as an argument, e.g.,
pr cond.pr <enter>
pr cond.inp <enter>

SPARK 1.0 User's Manual

82 •••• Appendix A Using the HVAC Tool Kit

This will place the driver problem and input files for cond.cc in the working directory. Alternatively, you
can execute the provided batch file called testhvac.bat to extract, build, and execute the driver. First, you
should go to the vspark\hvactk or other project directory. Then type:
testhvac cond <enter>

Results can be found in cond.out.

Note that the system models provided with the library show relatively complex macro classes that have been
constructed from other Toolkit classes. These also have test drivers in the pr.exe compressed file.

Table A.1 SPARK HVAC Toolkit Classes

Class Description

bf_ntu Coil bypass factor vs. an Ntu-like parameter

bound Bound a value

clipnorm Bound a value between 0 and 1

capratel Capacitance rate for water

cap_rate Moist air capacitance rate

cclogic Dry vs. wet coil decision logic

cond Generic conductance relation

cpair Specific heat of air

ctr1 Cooling tower Fr vs. range dependency

ctr2 Cooling tower Fr vs. approach dependency

diff Difference

dxcap_m Capacity variation with mass for DX AC unit

dxcap_t DX AC unit capacity variation with outside dry and inside wet bulb temperatures

dxeir_m EIR variation with mass flow rate

dxeir_t DX AC unit EIR variation with TWb

effc1u Ntu-effectiveness, stream 1 unmixed

effcbm Ntu-effectiveness, cross flow both mixed

effcbu Ntu-effectiveness, cross flow both unmixed

effctr Ntu-effectiveness for counter flow

effncy Forces two inputs to sum to 1.0

effntu1 Exponential effectiveness vs. Ntu

effprl Ntu-effectiveness for parallel flow

eintrp1 Exponential interpolation

eir1_oc Curve fit for eir1 in open centrifugal compressor

eir2_oc Curve fit for eir2 in DOE-2 open centrifugal compressor

enthalpy Enthalpy, dry bulb, humidity relation.

 SPARK 1.0 User's Manual

 Appendix A Using the HVAC Tool Kit •••• 83

enthvap Enthalpy of water vapor

enthwat Enthalpy of water

eq31 Equation 31 of ASHRAE HOF, Ch. 6

equal Equality

fflp_blr Boiler part load curve fit

fflp_dd Fraction of full load power for discharge damper fan

fflp_iv Fraction of full load power for inlet vane fan

fflp_vsd Fraction of full load power for variable speed drive fan

htxeff SPARK Heat exchanger effectiveness object

htxtemp Temp vs. capacity flow vs. effectiveness

humratio Humidity ratio vs. partial pressure of vapor

idealgas Ideal gas law

indep_fr Independent fractions

lat_rate Latent heat rate object.

lintrp Linear interpolation

lintrp1 Linear interpolation to 1

log10 SPARK log base-10 object.

max2 SPARK maximize object for two arguments

min2 SPARK minimum object for two arguments

neg SPARK negation object

polyn3 3rd degree polynomial

poslim Force to be positive

pow SPARK exponentiation object.

propcont Proportional controller

rcap_oc Curve fit for capacity in open centrifugal compressor

rho Moist air density vs. specific volume & humidity ratio

rhomoist Moist air density vs. dry bulb and humidity ratio

safprod SPARK safe product object

safquot SPARK safe quotient object

safrecip Safe reciprocal

satpress Saturated pressure relationship for water.

satp_hw Saturated Pressure (Hyland & Wexler)

satp_r Saturated pressure of water vapor, residual method.

select Logical if-then-else

SPARK 1.0 User's Manual

84 •••• Appendix A Using the HVAC Tool Kit

sercond Conductors in Series

square Square of a value

sum SPARK sum object

balance Transport balance equation

dewpt Dew point relationship for moist air using Walton's Saturation correlation

dewp_hw Dew point using Hyland & Wexler saturation correlation.

enthsat Dry bulb vs. enthalpy at saturation

relhum Relative humidity

relh_hw Relative humidity (Hyland & Wexler)

specvol Specific volume of air

wetbulb SPARK object defining the wet bulb temperature process.

wetb_hw Wet Bulb (Hyland & Wexler)

gendiv SPARK generic diverter object.

divsim Diverter. Splits a flow stream into two streams.

mixer Mixing box model for moist air

bf Coil bypass ratio relationships

bf_adp Bypass factor/apparatus dew point coil model

pumpsim Simple pump

ctfunc Cooling tower model correlation.

fann_dd Discharge damper fan, mass flow-enthalpy interface

fann_iv Inlet vane controlled fan, mass flow-enthalpy interface

fann_vsd Variable speed drive fan, mass flow-enthalpy interface

fansim_n Simple fan- part load coefficient & enthalpy/mass interface

fansim Simple fan with part load coefficients in the interface

fan_dd Discharge damper fan, volume flow -temperature interface

fan_iv Inlet vane controlled fan, volume flow -temperature interface

fan_vsd Variable speed drive fan, volume flow -temperature interface

htxc1u Cross flow, stream 1 unmixed heat exchanger model

htxcbm Cross flow, both streams mixed heat exchanger model

htxcbu Cross flow, both streams unmixed heat exchanger model

htxctr Counter flow heat exchanger model

htxprl Parallel flow heat exchanger model

enthxc1u Enthalpy exchanger model, cross flow, one stream unmixed

enthxcbm Enthalpy exchanger model, cross flow, both streams mixed

 SPARK 1.0 User's Manual

 Appendix A Using the HVAC Tool Kit •••• 85

enthxcbu Enthalpy exchanger model, cross flow, both streams unmixed

enthxctr Enthalpy exchanger model, counter flow

enthxprl Enthalpy exchanger model, parallel flow

humeff Humidity exchanger effectiveness

humex Humidity exchanger model

drcc1u Dry coil, cross flow, stream 1 unmixed

drccbm Dry coil, cross flow, both streams mixed

drccbu Dry coil, cross flow, both streams unmixed

drcctr Dry coil, counter flow

drcprl Dry coil, parallel flow

wcoilout Wet Coil Leaving Conditions

wtcc1u Wet Cooling/dehumidification Coil, cross flow, one stream unmixed

wtccbm Wet Cooling/dehumidification Coil, cross flow, both streams mixed

wtccbu Wet Cooling/dehumidification Coil, cross flow, both streams unmixed

wtcctr Wet Cooling/dehumidification Coil, counter flow

wtcprl Wet Cooling/dehumidification Coil, parallel flow

drywet Dry/Wet Cooling Coil Model

indevap Indirect evaporative cooler

tower Cooling tower model

evaphum Evaporative humidifier/cooler

airhx Air to air heat exchanger

ccsim Simple cooling coil model

acdx Direct expansion air-conditioning unit model

econ Economizer

boiler Boiler

cchiller DOE-2 single-stage compression chiller

vlvcirc Flow circuit with non-linear valve and series flow resistance

zone Simple steady-state zone model

vavsys VAV System

zone_dd Dual-duct controlled zone

ddhtbal Dual-duct zone convergence enhancer

varmix Variable mixing box

tstdhb Test driver for ddhtbal

ddsys Dual-duct (DD) System

SPARK 1.0 User's Manual

86 •••• Appendix A Using the HVAC Tool Kit

cvrhsys Constant volume reheat system

polyn3 3rd degree polynomial

bfd Backward-forward difference integration object

room Simple room with heat loss and air mass

bfd Backward-forward difference integration object

 SPARK 1.0 User's Manual

 Appendix B Preference Files •••• 87

Appendix B Preference Files

B.1 What are Preference Files?
Preferences file are external representations of objects of class PrefList. This C++ class is designed to
allow storage and retrieval of (key, value) pairs, somewhat like a mapping. However, this class differs from
a typical mapping in that it allows an hierarchical description of information. The example below will allow
you to better understand the structure and format of SPARK preference files.

B.2 Uses of Preference Files in SPARK
Preference files are used several places in SPARK to store information about important aspects of the
problem and how it is to be solved. For example, every SPARK problem has a probName.prf file that gives
information about the problem component structure, and how each component is to be solved (See Section
3.10.1, page 53). Also, each problem has a run control file probName.run (See Section 3.14, page 65) with
information about the simulation interval and other control issues. In some environments, a global spark.prf
stores critical information about the SPARK installation. Here we explain the general format of all
preference files.

B.3 Hierarchical Data
As an example, consider the need to store the description of a building. The building is to have a Name, a
Roof, a Floor, and an arbitrary number of Walls. Although the Name has a simple string value, e.g.,
“MyBldg”, Roof, Floor and every Wall has two attributes, U and W.

Figure B.1 shows this information as a general tree. It can also be thought of as an object called
theBuilding. Every node in this tree can be viewed as a key, and the list of child nodes can be viewed as the
value of that key. Thus theBuilding has a value which is the list (Name, Roof, Walls, Floor), each of which
is another tree. In turn, the root of each of these trees can be thought of as another key with its own value.
The key Name has a single value, myBldg, and the key Roof has the value which is the list (U, W), each of
which is a tree. The U and W keys at the roots of these trees each have a single value, (1.2) and (1.0)
respectively. Note that nodes in the tree like myBldg, 1.2, and 1.0 are distinctly different from nodes like
Name or Root in that they have no children, i.e., they are leaves. Another way of saying this is that the
“value” of a node like myBldg or U consist of an empty list (). These are the actual data stored in the
structure. Note also that the path from the root to any leaf is a unique identifier of the data in the leaf. For
example, theBuilding.Roof.U identifies the value 1.2.

SPARK 1.0 User's Manual

88 •••• Appendix B Preference Files

Figure B.1 Simple Building Represented as a Tree

B.4 Preference File for the Example
The preference file expresses this tree structure as text. The preference file for the tree in Figure B.1 is
shown below.

The format follows the convention that a key is followed by a list representing its value, enclosed in
parentheses. If the list is empty, indicated by empty parentheses, the implication is that the key is in fact
actual data. Note that the key representing the file itself, in this case theBuilding, is not part of the stored
data. This is because externally the operating system will know it by the assigned file name, and programs
that read preference files assign the file contents, i.e., its value, to an instance of prefItem class.
Consequently, it is not useful to store the name in the file itself, and the file content begins with an opening
parenthesis, and ends with a closing parenthesis. With these conventions, here is the file for theBuilding:

 (
 Name (myBldg ()
)
 Roof (
 U (1.2 ()
)
 W (1.0 ()
)
)
 Walls (
 North (
 U (1.2 ()
)
 W (0.5 ()
)
)
 South (

 SPARK 1.0 User's Manual

 Appendix B Preference Files •••• 89

 U (1.2 ()
)
 W (0.5 ()
)
)
 East (
 U (1.2 ()
)
 W (0.5 ()
)
)
 West (
 U (1.2 ()
)
 W (0.5 ()
)
)
)
 Floor (
 U (1.2 ()
)
 W (5.0 ()
)
)
)

Since theBuilding tree has four first-level nodes, between file opening and closing parenthesis there are four
main clauses, each consisting of a key followed by a parenthetic expression representing the value of the
key. The first-level keys are the nodes in the tree, Name, Roof, Walls, and Floor. The Name key has a
simple value, the building name string “myBldg”, so it is followed by a empty parentheses. Note that the
format is delimited entirely by the parentheses so spaces in strings are allowed, and no quoting is necessary.
The Roof and Floor keys have values that are trees with nodes representing U and W. The U and W keys
have simple values, so they are followed by empty parentheses. The Walls identifier has a more complex
structure, namely four trees, each with a structure like Roof and Floor.

 SPARK 1.0 User's Manual

 References •••• 91

References

Anderson, J. L. (1986). A Network Language for Definition and Solution of Simulation Problems,
Lawrence Berkeley Laboratory.
Brandemuehl, M. J. (1993). HVAC 2 Toolkit: A Toolkit for Secondary HVAC System Energy Calculations,
Joint Center for Energy Management, University of Colorado.

Buhl, W. F., A. E. Erdem, et al. (1993). “Recent Improvements in SPARK: Strong Component
Decomposition, Multivalued Objects, and Graphical Interface.” Proceedings of Building Simulation '93,
Adelaide, International Building Performance Simulation Association. Available from Soc. for Computer
Simulation International, San Diego, CA.

Char, B. W., K. O. Geddes, et al. (1985). First leaves: a tutorial introduction to Maple, in Maple User's
Guide. Waterloo, Ontario, WATCOM Publications Ltd.

Conte, S. D. and C. de Boor (1985). Elementary Numerical Analysis: An Algorithmic Approach. McGraw-
Hill Publishing Co.

Dennis, J. E. and Schnabel, R. B. (1996). Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Classics in Applied Mathematics 16, SIAM.

LBL (1984). DOE-2 Reference Manual, Lawrence Berkeley Laboratory.

McHugh, J. (1990). Algorithmic Graph Theory. Englewood Cliffs NJ 07632, Prentice Hall.

Nataf, J.-M. and F. C. Winkelmann (1992). Automatic Code Generation in SPARK: Applications of
Computer Algebra and Compiler-compilers. Berkeley, CA, Simulation Research Group, Lawrence
Berkeley Laboratory.

Nierstrasz, O. (1989). “Survey of Object-Oriented Concepts.” Object-Oriented Concepts, Databases, and
Applications. W. Kim and F. H. Lochovsky. New York/Reading, ACM Press/Addison-Wesley: 3-21.

Press, W. H., B. P. Flannery, et al. (1988). Numerical Recipes in C. Cambridge, Cambridge University
Press.

Rand, R. H. (1984). Computer Algebra in Applied Mathematics: An Introduction to MACSYMA. Boston.

Sahlin, P. and E. F. Sowell (1989). “A Neutral Format for Building Simulation Models.” Proceedings of
Building Simulation '89, Vancouver, BC, International Building Performance Simulation Association.

Sen, W. T. (1994). untitled draft. Singapore.

SPARK 1.0 User's Manual

92 •••• References

Sowell, E. F. and W. F. Buhl (1988). “Dynamic Extension of the Simulation Problem Analysis Kernel
(SPANK).” Proceedings of the USER-1 Building Simulation Conference, Ostend, Belgium, Soc. for
Computer Simulation International.

Sowell, E. F., K. Taghavi, et al. (1984). “Generation of Building Energy System Models.” ASHRAE Trans.
90(Pt. 1): 573-86.

 SPARK 1.0 User's Manual

 Glossary of Terms •••• 93

Glossary of Terms

Algorithmic programming
A sequence of operations and assignments leading from prescribed inputs to prescribed outputs.

Assignment
In computer languages, assignment is the action whereby a value is associated with an identifier
representing a variable. Although the symbol "=" is often used for assignment, e.g., X = 2*y, assignment is
different from mathematical equality because the latter implies that the expressions at the left and right of
the "=" symbol are always equal. In particular, a sequence of assignments are order dependent, while a set
of mathematical equations are not. See algorithmic programming.

Atomic classes
A model comprising a single equation with used variables linked to its ports. Acts as a template for
instantiation of atomic objects.

Break level
An integer 0-10 expressing the desirability of using the associated link to break cycles in the computation
graph.

Class
A general description of an equation (atomic class) or group of related equations (macro class). A class acts
as a template for instantiation of objects.

Continuous variable
Variable that can take on any real value within a range.

Cut set
A set of variables (links) that will break all cycles in the computation graph. SPARK attempts to minimize
the cut set size. The associated variables are called "break variables" and are used for iterative solution.

SPARK 1.0 User's Manual

94 •••• Glossary of Terms

Differential algebraic equation system (DAES)
A system of differential and algebraic equations for simultaneous solution.

Discrete state variable
A variable that can take on only specific values rather than any real value within a range.

Dynamic variables
A variable for which the derivative appears in a differential equation.

Graph
See mathematical graphs.

Ill posed
A problem that is not well posed is said to be ill posed. See Well posed.

Implicit inverse
A form of an equation in which a particular variable is on the left, but also occurs in the right side
expression. Used when explicit inverses cannot be obtained. Solution requires iteration.

Initialization
Value of variable at InitialTime. Required for dynamic variables, and for break variables.

InitialTime
The time when simulation starts. That is, the time at which initial conditions for differential equations
apply.

Input/output free
A style of model expression which provides a set of equations rather than an algorithm. Since any set of
inputs that leads to a well posed problem can be specified in conjunction with these equations, it is
sometimes called input/output free.

Instantiate
To create an object instance based on the class definition. The declare keyword performs instantiation in
SPARK.

 SPARK 1.0 User's Manual

 Glossary of Terms •••• 95

Integration formula
A formula used in numerical solution of differential equations to calculate a value for the integration
variable at the next point in time. Can be explicit, in which the new value appears only on the left, or
implicit in which case the new value and or the new derivative appears also in the right side expression.

Interface variable
A variable defined in a class that is to be visible from outside. Interface variables are defined with the port
keyword.

Inverse
Precisely, a form of an equation in which a particular variable is isolated on one side; i.e., a formula for a
variable. In SPARK, we use the term explicit inverse for such a formula. See also Implicit inverse.

Jacobian
Square matrix of partial derivatives of residual equations with respect to the break variables in a strongly
connected component.

Macro classes
A group of SPARK atomic or other macro classes linked together through their respective ports to form a
subsystem model. A macro class can be use wherever an atomic class can be used.

Match level
An integer 0-10 expressing the desirability of matching the associated link variable with the associated
object port.

Mathematical graphs
A structure comprising a set of vertices (nodes) and edges (arcs) which connect them. Often used to model
systems of interacting entities.

Object oriented
Modeling methodology in which the model behavior and data are encapsulated in a model entity
comparable to the physical entity that it represents. Communicates with other parts of the model only
through its interface ports.

Parser
The program that interprets the SPARK input files as the first step toward solution.

SPARK 1.0 User's Manual

96 •••• Glossary of Terms

Prediction
Value of break variable at beginning of iterative solution. Defaults to value at previous time step if not
specified as pred_from_link.

Propagation
Process by which SPARK infers certain link or port statement settings, e.g., init, max and min, from settings
at lower or higher levels with respect to macro classes and problem specifications.

Relaxation coefficient
Multiplier, usually a fraction, on calculated correction that is actually applied in order to get new break
variable values during iterative solution.

Retained state
Value that needs to be saved between successive uses of an object. Currently, SPARK objects cannot retain
state internally. However, values of link variables are retained for 4 previous time steps. State can also be
retained through use of the update_from_link concept.

Solver
The executable program that SPARK builds to solve a particular problem. Called probName.exe
(Windows) or probName (UNIX). The underlying programs used by SPARK in constructing executable are
also referred to as “the solver” in places.

Strong component
Short for strongly connected component. In graph theory, a maximal set of vertices and edges that allow any
vertex in the set to be reached from every other vertex. In SPARK, corresponds to a separately solvable
sub-problem, discovered automatically.

Symbolic manipulation
Operations on mathematical expressions in terms of contained symbols, as opposed to numerical evaluation.
The goal might be solution for one or more symbols in terms of the others. Often done with computer
software, i.e., computer algebra.

Updating
Setting value of Previous Value Variable to the previous value of variable specified with the
update_from_link keyword. Occurs at beginning of time step, before solving the components.

Well posed
A problem is said to be well posed if it admits at least one solution. One requirement is an equal number of
equations (objects) and unknowns (links). There also must be a complete matching, i.e., a matching of each

 SPARK 1.0 User's Manual

 Glossary of Terms •••• 97

variable to a unique equation inverse. However, problems can meet these requirements and still not be well
posed. For example, y=f(x) and y = g(x) may not intersect.

 SPARK 1.0 User's Manual

 Index •••• 99

Index

', 48
., 21, 46–48, 75
~ tilde, 48
a problem specification file, 2, 7, 9, 61
algebraic problems, 3
alias, 16
as break variables, 35, 38, 40, 42–44, 53–54, 58, 61, 64
atomic class, 2, 16, 41, 50, 52, 71, 73, 79
class, 2, 5, 10–12, 14–17, 41, 50, 77, 81
compiler, 2, 15–17, 91
component, 10, 13, 20, 35, 53–59, 63, 66, 87
component settings, 59
computation graph, 19
const, 16
constant values, 33, 79
continuous systems, 1
Convergence, 13–14, 35, 42, 53, 57, 59–63, 65, 85
cut set, 39, 53, 56, 60–61
declare, 6, 20, 73, 77
Default, 2, 39–40, 42, 44, 49, 53–57, 60–63, 66, 72, 74
derivative, 23–24, 26–27, 37, 58
diagnostic level, 59
DiagnosticLevel, 7, 63, 66
differential equations, 2, 22–23, 25–26, 37, 39, 43, 53
dot, 21, 46–48, 75
dynamic, 7, 22–25, 27, 37, 39–40, 42–43, 64, 92
equations block, 15
equations file, 10, 12
Euler, 23–24, 26, 37, 52, 59
explicit, 23, 26, 51, 59
Files, 7, 10, 22, 33, 37, 39–40, 42–44, 47, 48, 52, 63–65, 73, 79, 81, 88
frst_ord, 26, 66

SPARK 1.0 User's Manual

100 •••• Index

globalclass, 6, 17, 23, 28, 81
gnuplot, 64
graph, 3, 10, 19–20, 38, 53, 61
Homotopy, 54–55, 58
HVAC Toolkit, 17, 30, 47, 81
ill posed, 13
implicit, 23–24, 51, 60
init, 25, 33–35, 39–40, 42–43, 49, 51–52, 72, 74
Initial Values, 17, 22, 25, 35, 37–40, 43–44, 60
initialization, 39–40, 65
InitialTime, 7, 25, 28, 35, 37–42, 44, 53, 64–66
input, 6, 8, 10, 13, 19, 25, 33–36, 37, 42–43, 46, 74, 76
input file, 7, 8–10, 25, 33–35, 39–40, 43–44, 64, 66
integration formula, 23, 27, 37–38, 52
inverses, 2, 10, 15, 50, 60
Iterative Solution, 11, 13, 24, 38, 41, 49, 53, 55–58, 62
Jacobian, 38, 53–55, 58, 62
link, 6, 8, 13, 19, 22, 35, 40, 73
Link Names, 21, 47–48
macro classes, 20–22, 42, 47–48, 52, 73
Macro Links, 44, 47, 48, 81
macro ports, 44–47
match_level, 12, 49, 61, 74
matching, 3, 10, 19–20, 38, 53, 61
mathematical graphs, 2
max, 42, 49, 51, 74
min, 42, 49, 51, 74
mixer, 20, 22, 45, 47–48, 84
Newton-Raphson, 13, 38–39, 53–58
NOERR, 45, 47, 74
object, 1–2, 5–6, 8–9, 13, 15–17
object oriented, 1
ordinary differential equations, 2, 22
past values, 23–24, 40, 53
perturbation, 58–59
Portability, 2
ports, 5, 15, 33, 42, 73
prediction, 13, 39–41, 43
prefix symbols, 48
previous time, 23–24, 37, 39, 41, 44, 52
previous value variable, 41, 51–53, 78
propagation, 42, 47
reference variable, 16
Relaxation coefficient, 54–56, 59

 SPARK 1.0 User's Manual

 Index •••• 101

report, 63–65, 76
retained state, 17
round-off error, 59
run control, 7, 22, 25, 44, 59, 63, 64–66, 78, 87
run control file, 7, 25, 64–66
scale, 54, 58
scaled tolerance, 58
single quote, 48
snapshot, 63, 64–66
stopping criterion, 57
strongly connected components, 10
subports, 45–46, 48, 74
symbolic inversions, 13
symbolic tools, 2, 14, 16
time step, 22–23, 25–27, 37–38, 41, 51–53, 59, 63, 78
time unit, 33
time varying inputs, 43, 79
tolerance, 55–60, 63, 66
Toolkit, 81
trace File, 62
Units, 17–19, 25, 33, 45, 51, 75
UNIX, 2, 7, 53
update, 39, 41, 51, 59, 66, 78
update_from_link, 39–41, 51–52, 76
Valid Range, 17
well posed, 13–14, 39, 60
wgnuplot, 26

 SPARK 1.0 User's Manual

 Notice •••• 103

Notice

SPARK is copyright by The Regents of the University of California and by Ayres Sowell
Associates, Inc. and made available under policies established by the Lawrence Berkeley National
Laboratory and the U.S. Department of Energy.
This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy,
Office of Building Technology, State and Community Programs, Office of Building Systems of the
U.S. Department of Energy, under contract DE-AC03-76SF00098.
The Government is granted for itself and others acting on its behalf a paid-up, nonexclusive,
irrevocable, worldwide license in this data to reproduce, prepare derivative works, and perform
publicly and display publicly. Beginning five (5) years after (date permission to assert copyright
was obtained) and subject to any subsequent five (5) year renewals, the Government is granted for
itself and others acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license in this
data to reproduce, prepare derivative works, distribute copies to the public, perform publicly and
display publicly, and to permit others to do so. NEITHER THE UNITED STATES NOR THE
UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF THEIR EMPLOYEES,
MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL
LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY
OWNED RIGHTS.
The SPARK simulation program is not sponsored by or affiliated with SPARC International, Inc.
and is not based on SPARC architecture.

	Section 1 Introduction
	1.1 What is SPARK?
	1.2 Kinds of Problems
	1.3 Describing Problems for SPARK Solution
	1.4 Portability and User Interfaces
	1.5 The History of SPARK

	Section 2 Examples
	2.1 Overview and Terminology
	2.2 Simple Math Problems
	2.2.1 A Single Object Example
	2.2.2 Arbitrary Input/Output Designation
	2.2.3 Problems with Several Objects
	2.2.4 Problems Requiring Iterative Solution

	2.3 Well Posed Problems
	2.4 Creating SPARK Atomic Classes
	2.4.1 Class Definition
	2.4.2 Inverse Functions Definition

	2.5 Models of Physical Systems
	2.5.1 Units, Valid Range, and Initial Values
	2.5.2 Macro Objects

	2.6 Differential Equations
	2.6.1 Numerical Solution of Differential Equations
	2.6.2 How SPARK Deals with Differential Equations
	2.6.3 Solving a Simple Differential Equation
	2.6.4 SPARK Library Integrator Object Classes
	2.6.5 Creating SPARK Integrator Object Classes

	2.7 A Larger Example: Air-Conditioned Room

	Section 3 Advanced Topics
	3.1 Numerical Integration Issues
	3.2 Iterative Solution and Break Variables
	3.3 How SPARK Assigns Values to Variables
	3.3.1 Initialization
	What Must be Initialized
	What Might Need Initialization
	How to Specify Initialization

	3.3.2 Prediction
	Where Prediction is Needed
	How Prediction is Specified

	3.3.3 Updating
	What Needs to Be Updated
	How Updating is Specified

	3.3.4 Solution
	What Needs to Be Solved For
	How Solution Is Specified

	3.3.5 Propagation

	3.4 Input Values from Files
	3.5 Macro Links
	3.6 Internal SPARK Names for Variables (Full Names of Links or Ports)
	3.7 Using the Probe Statement
	3.8 Symbolic Processing
	3.8.1 Simple Symbolic Processing
	3.8.2 Generating an Inverse
	3.8.3 Caveats

	3.9 Previous Value Variables, or Updating Variables from Links
	3.10 Solution Method Control
	3.10.1 SPARK Problem Components
	3.10.2 Default Settings
	3.10.3 Component Solving Methods
	3.10.4 Matrix Solving Methods
	3.10.5 Stopping Criterion for Iterative Solution
	3.10.6 Scaled Perturbation for Partial Derivatives
	3.10.7 Update Component Settings at Run Time

	3.11 Debugging SPARK Programs
	3.11.1 Parsing Errors
	3.11.2 Setup Errors
	3.11.3 Solution Difficulties
	3.11.4 Trace File Mechanism
	3.11.5 Problem-level Diagnostic Reports

	3.12 Output and Post Processing
	3.13 Snapshot Files and Restarting Solutions
	3.14 Run Control File
	3.15 Using SPARK library functions in an atomic class
	3.15.1 Error handling functions
	3.15.2 Predicate functions
	3.15.3 Access functions
	3.15.4 Math functions
	3.15.5 Access methods for the TArgument class

	Section 4 SPARK Language Reference
	4.1 Notation Used in this Section
	4.2 Special characters
	4.3 Names and Other Strings
	4.3.1 Reserved Names
	4.3.2 Rules for User Specified Names
	4.3.3 Literals

	4.4 Comments
	4.5 Compound Statements
	4.6 Atomic Class File
	4.7 Macro Class File
	4.8 Problem File
	4.9 PORT Statement
	4.10 PARAMETER Statement
	4.11 PROBE statement
	4.12 DECLARE statement
	4.13 LINK statement
	4.14 INPUT Statement
	4.15 EQUATIONS statement
	4.16 FUNCTIONS statement
	4.17 Input From Files

	Appendix A Using the HVAC Tool Kit
	A.1 The SPARK HVAC Toolkit
	A.2 Example Usage

	Appendix B Preference Files
	B.1 What are Preference Files?
	B.2 Uses of Preference Files in SPARK
	B.3 Hierarchical Data
	B.4 Preference File for the Example

	References
	Glossary of Terms
	Algorithmic programming
	Assignment
	Atomic classes
	Break level
	Class
	Continuous variable
	Cut set
	Differential algebraic equation system (DAES)
	Discrete state variable
	Dynamic variables
	Graph
	Ill posed
	Implicit inverse
	Initialization
	InitialTime
	Input/output free
	Instantiate
	Integration formula
	Interface variable
	Inverse
	Jacobian
	Macro classes
	Match level
	Mathematical graphs
	Object oriented
	Parser
	Prediction
	Propagation
	Relaxation coefficient
	Retained state
	Solver
	Strong component
	Symbolic manipulation
	Updating
	Well posed

	Index
	Notice

